Skip to main content
Log in

Proliferation, viability, and metabolism of human tumor and normal cells cultured in microcapsule

  • Original Research Articles
  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

In this study, we investigated the effect of the microenvironment provided by alginate-poly-l-lysine-alginate (APA) microcapsule with liquefied or gelled core on the proliferation, viability, and metabolism of human cells, including anchorage-dependent MCF-7 breast cancer cells and primary fibroblasts, and anchorage-independent K-562 leukemia cells; cells in conventional culture were used as control. The growth pattern of cells in microcapsule was examined by phase-contrast micrography. The cell viability, proliferation, organization, and gene expression were evaluated by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide assay, hematoxylin and eosin staining, live/dead staining, 5-bromo-20-deoxyuridine labeling, and immunohistochemistry, respectively. Cell metabolism was determined by measuring glucose and lactate concentrations in medium. The results demonstrate that APA microcapsule with liquefied core provides a microenvironment for both anchorage-dependent and anchorage-independent cells to grow into a large cell aggregate and maintain cell viability at a constant level for a period of time. In conclusion, cells in APA microcapsule are alive and have proliferation potential with lower metabolism rate. APA microcapsule may be a useful tool for in vitro tumor cell modeling and anticancer drug screening as well as for cancer gene therapy. In addition, it lays a solid foundation for the use of microencapsulation in cell culture in vitro and cell implantation in vivo.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Lim, F. and Sun, A. M. (1980), Science 210 (21), 908–910.

    Article  CAS  Google Scholar 

  2. Sambanis, A. (2003), Diabetes Technol. Ther. 5 (4), 665–668.

    Article  CAS  Google Scholar 

  3. Sun, T., Chan, M. L., Zhou, Y., et al. (2003), Tissue Eng. 9 (Suppl. 1), S65-S75.

    Article  CAS  Google Scholar 

  4. Basta, G., Sarchielli, P., Luca, G., (2004), et al., Transpl. Immunol. 13, 289–296.

    Article  CAS  Google Scholar 

  5. Luca, G., Basta, G., Calafiore, R., Rossi, C., Giovagnoli, S., Esposito, E., and Nastruzzi, C. (2003), Biomaterials 24, 3101–3114.

    Article  CAS  Google Scholar 

  6. Marc, R. G., Robert, C. H., and Emmanuel, C. O. (1998), J. Surg. Res. 1998; 76, 7–10.

    Article  Google Scholar 

  7. Ross, C. J. D., Ralph, M., and Chang, P. L. (2000), Exp. Neurol. 166, 276–286.

    Article  CAS  Google Scholar 

  8. Tadanobu, U., Henry, B., Josef, P., Thorsteinn, L., Thordis, K., Betty, M. T., and Alessandro, O. (1996), J. Control. Release 40, 251–260.

    Article  Google Scholar 

  9. Ma, X. J., Vaccie, I., and Sun, A. M. (1994), Art Cells Blood Subs. Immob. Biotech. 22 (1), 43–69.

    Article  CAS  Google Scholar 

  10. Bjerkvig, R., Read, T. A., Vajkoczy, P., et al. (2003), Acta Neurochir. Suppl. 88, 137–141.

    CAS  Google Scholar 

  11. Aristides, D. T., Ivan, A. D., Ian, R. G. et al. (2005), BBA-Mol. Cell. Biol. L 1686, 190–199.

    Article  Google Scholar 

  12. Barsoum, S. C., Milgram, W., Mackay, W., et al. (2003), J. Lab. Clin. Med. 142, 399–413.

    Article  CAS  Google Scholar 

  13. Patricia, L. C. (1996), Transfus. Sci. 17, 35–43.

    Article  Google Scholar 

  14. de Haan, B. J., Faas, M. M., and de Vos, P. (2003), Cell Transplant. 12(6) 617–625.

    Article  Google Scholar 

  15. Molly, M. S., Hala, F. Q., Robert, L., and Shastri, P. V. (2004), Biomaterials 25, 887–894.

    Article  Google Scholar 

  16. Hasan, U. and Michael, V. S. (1990), Biomaterials 11 (11), 708–712.

    Google Scholar 

  17. Orive, G., Hernandez, R. M., Gascon, A. R., Igartua, M., and Pedraz, J. L. (2003), Eur. J. Pharm. Sci. 18, 23–30.

    Article  CAS  Google Scholar 

  18. Shimi, S. M., Hopwood, D., Newman, E. L., and Cuschieri, A. (1991), Br. J. Cancer 63, 675–680.

    Article  CAS  Google Scholar 

  19. Zhang, X. L., Wang, W., Yu, W. T., Xie, Y. B., Zhang, X. H., Zhang, Y., and Ma, X. J. (2005), Biotechnol. Prog. 21, 1289–1296.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaojun Ma.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, X., Wang, W., Xie, Y. et al. Proliferation, viability, and metabolism of human tumor and normal cells cultured in microcapsule. Appl Biochem Biotechnol 134, 61–76 (2006). https://doi.org/10.1385/ABAB:134:1:61

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1385/ABAB:134:1:61

Index Entries

Navigation