Skip to main content
Log in

Effect of lipase immobilization on resolution of (R, S)-2-octanol in nonaqueous media using modified ultrastable-Y molecular sieve as support

  • Original Research Articles
  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

The lipase from Penicillium expansum PED-03 (PEL) was immobilized onto modified ultrastable-Y (USY) molecular sieve and the resolution of (R, S)-2-octanol was carried out in a bioreactor in nonaqueous media by the immobilized lipase. It was found that the conversion rate, enantiomeric excess (ee) value, and enantioselectivity (E) value of the resolution catalyzed by PEL immobilized on modified USY molecular sieve were much higher than those of the reaction catalyzed by free PEL and PEL immobilized on other supports. Immobilized on modified USY molecular sieve, the PEL exhibited obvious activity within a wider pH range and at a much higher temperature and showed a markedly enhanced stability against thermal inactivation, by which the suitable pH of the buffer used for immobilization could be “memorized.” The conversion rate of the reaction catalyzed by PEL immobilized on modified USY molecular sieve reached 48.84%, with excellent enantio-selectivity (avarege E value of eight batches >460) in nonaqueous media at “memorial” pH 9.5, 50°C for 24 h, demonstrating a good application potential in the production of optically pure (R, S)-2-octanol.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Cong, F. D., Wang, Y. H., Ma, C. Y., et al. (2005), Enzyme Microb. Technol. 36, 595–599.

    Article  CAS  Google Scholar 

  2. Gerald, K., Mark, P. S., and Alexander, M. K. (1985), J. Am. Chem. Soc. 107, 7072–7076.

    Article  Google Scholar 

  3. Zhu, J., Liu, H. H., Hu, Y., Xue, J. H., and Cao, S. G. (1998), J. Mol. Catal. 12, 323–328 (in Chinese).

    CAS  Google Scholar 

  4. Dai, D. Z. and Xia, L. M. (2005), Biotechnol. Prog. 21, 1165–1168.

    Article  CAS  Google Scholar 

  5. Ghanem, A. and Aboul-Enein, H. Y. (2004), Tetrahedron: Asymmetry 15(21), 3331–3351.

    Article  CAS  Google Scholar 

  6. Moon-Young, Y., Lee, S. H., Cheong, C. S., and Park, J. K. (2004), Enzyme Microb. Technol. 35, 574–580.

    Article  CAS  Google Scholar 

  7. Nair, M. S. and Joly, S. (2000), Tetrahedron: Asymmetry 11, 2049–2052.

    Article  CAS  Google Scholar 

  8. Isumi, T., Nakamura, K., and Fukase, T. (1990), Agric. Biol. Chem. 54, 1253–1258.

    Google Scholar 

  9. Sugihara, T., Tani, T., and Tominaga, Y. (1991), J. Biochem. 109, 211–216.

    CAS  Google Scholar 

  10. Ujang, Z., Husain, W. H., Seng, M. C., Abdul, R., and Abdul-Rashid, A. H. (2003), Process Biochem. 38, 1483–1488.

    Article  CAS  Google Scholar 

  11. Partridge, J., Halling, P. J., and Moore, B. D. (1998), Chem. Commun. 7, 841, 842.

    Article  Google Scholar 

  12. Kumar, D., Schumacher, K., du-Fresne-von-Hohenesche, C., Grün, M., and Unger, K. K. (2001), Colloids Surf. A: Physicochem. Eng. Aspects 187, 109–116.

    Article  Google Scholar 

  13. Dumitriu, E., Secundo, F., Patarin, J., and Fechete, I. (2003), J. Mol. Catal. B: Enzymat. 22, 119–133.

    Article  CAS  Google Scholar 

  14. Salis, A., Sanjust, E., Solinas, V., and Monduzzi, M. (2003), J. Mol. Catal. B: Enzymat. 24, 75–82.

    Article  Google Scholar 

  15. Takahashi, H., Li, B., Sasaki, T., Miyazaki, C., Kajino, T., and Inagaki, S. (2001), Microporous Mesoporous Mater. 44, 755–762.

    Article  Google Scholar 

  16. Bagi, K., Simon, L. M., and Szajáni, B. (1997), Enzyme Microb. Technol. 20, 531–535.

    Article  CAS  Google Scholar 

  17. Abdul, R. M., Tajudin, S. M., Hussein, M. Z., Abdul, R. R., Salleh, A. B., and Basri, M. (2005), Appl. Clay Sci. 29, 111–116.

    Article  Google Scholar 

  18. Adamczak, M. and Bednarski, W. (2004), Process Biochem. 39, 1347–1361.

    Article  CAS  Google Scholar 

  19. Wang, Z., Feng, Y., and Cao, S. G. (2002), Adv. Nat. Sci. 12, 130–134 (in Chinese)

    Google Scholar 

  20. Costantino, H. R., Griebenow, K., Lange, R., and Klibanow, A. M. (1997), Biotechnol. Bioeng. 53, 345–348.

    Article  CAS  Google Scholar 

  21. Yang, H., Cao, S. G., Han, S. P., Huang, Z. L., and Yang, T. S. (1996), Chin. Biochem. J. 12, 377–379 (in Chinese).

    Article  CAS  Google Scholar 

  22. Wang, Y., Zhang, F. B., Zhu, H. G., Song, Z. X., Wang, S. L., and Zeng, P. (2005), Chem. Reaction Eng. Technol. 21, 60–64 (in Chinese).

    Google Scholar 

  23. Li, M. Q., Wang, D. B., and Zhou, J. Y. (1993), Ion Exchange Adsorption 9, 199–203 (in Chinese).

    CAS  Google Scholar 

  24. Jacques, J., Collet, A., and Wilen, S. H. (1981), in Resolution of Alcohols: Enantiomers, Racemates and Resolutions, Wiley, New York, pp. 263–266.

    Google Scholar 

  25. Solladié-Cavallo, A., Schwarz, J., and Mouza, C. (1998), Tetrahedron Lett. 39, 3861–3864.

    Article  Google Scholar 

  26. Cativiela, C., Díaz-de-Villegas, M. D., and Gálvez, J. A. (1999), Tetrahedron Lett. 40, 1027–1030.

    Article  CAS  Google Scholar 

  27. Muralidhar, R. V., Chirumamilla, R. R., Ramachandran, V. N., Marchant, R., and Nigam, P. (2002), Bioorg. Med. Chem. 10, 1471–1475.

    Article  CAS  Google Scholar 

  28. Nascimento, M. G., Zanotto, S. P., Melegari, S. P., Fernandes, L. S., and Marcus, M. (2003), Tetrahdron: Asymmetry 14, 3111–3115.

    Article  CAS  Google Scholar 

  29. Zhang, Y. H., Yuan, C. Y., and Li, Z. Y. (2002), Tetrahedron 58, 2973–2978.

    Article  CAS  Google Scholar 

  30. Kato, K., Gong, Y. F., Saito, T., and Yokogawa, Y. (2004), J. Mol. Catal. B: Enzymat. 30, 61–68.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Liming Xia.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dai, D., Xia, L. Effect of lipase immobilization on resolution of (R, S)-2-octanol in nonaqueous media using modified ultrastable-Y molecular sieve as support. Appl Biochem Biotechnol 134, 39–50 (2006). https://doi.org/10.1385/ABAB:134:1:39

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1385/ABAB:134:1:39

Index Entries

Navigation