Skip to main content
Log in

Maniplating the phenolic acid content and digestibility of italian ryegrass (Lolium multiflorum)b y vacuolar-targeted epession of a fungal ferulic acid esterase

  • Session 2 Today's Biorefineries
  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

In grass cell walls, ferulic acid esters linked to arabinosyl residues in arabinoxylans play a key role in crosslinking hemicellulose. Although such crosslinks have a number of important roles in the cell wall, they also hinder the rate and extent of cell wall degradation by ruminant microbes and by fungal glycohydrolyase enzymes. Ferulic acid esterase (FAE) can release both monomeric and dimeric ferulic acids from arabinoxylans making the cell wall more susceptible to further enzymatic attack. Transgenic plants of Lolium multiflorum expressing a ferulic acid esterase gene from Aspergillus niger, targeted to the vacuole under a constitutive rice actin promoter, have been produced following microprojectile bombardment of embryogenic cell cultures. The level of FAE activity was found to vary with leaf age and was highest in young leaves. FAE expression resulted in the release of monomeric and dimeric ferulic acids from cell walls on cell death and this was enhanced severalfold by the addition of exogenous β-1,4-endoxylanase. We also show that a number of plants expressing FAE had reduced levels of cell wall esterified monomeric and dimeric ferulates and increased in vitro dry-matter digestibility compared with nontransformed plants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Hatfield, R. D., Ralph, J., and Grabber, J. H. (1999), J. Sci. Food Agric. 79, 403–407.

    Article  CAS  Google Scholar 

  2. Hartley, R. D. and Ford, C. W. (1989) Am. Chem. Soc. 9, 137–145.

    Google Scholar 

  3. Scalbert, A., Monties, B., Lallemand, J. Y., Guittet, E., and Rolando, C. (1985), Phytochemistry 24, 1359–1362.

    Article  CAS  Google Scholar 

  4. Ralph, J., Quideau, S., Grabber, J. H., and Hatfield, R.D. (1994), J. Chem. Soc. 1, 3485–3498.

    Google Scholar 

  5. Eraso, F. and Hartley, R. D. (1990), J. Sci. Food Agric. 51, 163–170.

    Article  CAS  Google Scholar 

  6. Grabber, J. H., Hatfield, J. R., and Ralph, J. (1998), J. Sci. Food Agric. 77, 193–200.

    Article  CAS  Google Scholar 

  7. de Vries, R. P., Michelsen, B., Poulsen, C. H., et al. (1997), Appl. Environ. Microbiol. 63, 4638–4644.

    Google Scholar 

  8. Rogers, J. C., Dean, D., and Heck, G. R. (1985), Proc. Natl. Acad. Sci. USA 82, 6512–6516.

    Article  CAS  Google Scholar 

  9. McElroy, D., Zhang, W., Cao, J., and Wu, R. (1990), Plant Cell 2, 163–171.

    Article  CAS  Google Scholar 

  10. Heim, R., Prasher, D. C., and Tsien, R. Y. (1994), Proc. Natl. Acad. Sci. USA 91, 12,501–12,504.

    Article  CAS  Google Scholar 

  11. Bilang, R., Iida, S., Peterhans, A., Potrykus, I., and Paskowski, J. (1991), Gene 100, 247–250.

    Article  CAS  Google Scholar 

  12. Dunn-Coleman, N., Langdon, T., and Morris, P. (2001), USA Patent Application No. 20030024009.

  13. Dalton, S. J., Bettany, A. J. E., Timms, E., and Morris, P. (1999), Plant Cell Rep. 18, 721–726.

    Article  CAS  Google Scholar 

  14. Waldron, K. W., Parr, A. J., Ng, A., and Ralph, J. (1996), Phytochem. Anal. 7, 305–312.

    Article  CAS  Google Scholar 

  15. Jones, D. I. H. and Hayward, M. V. (1975), J. S. Food Agric. 26, 711–718.

    Article  CAS  Google Scholar 

  16. France, J., Dhanoa, M. S., Theodorou, M. K., Lister, S. J., Davies, D. R., and Isac, D. (1993), J. Theor. Biol. 163, 99, 100.

    Google Scholar 

  17. Bartolome, B., Faulds, C. B., Kroon, P. A., et al. (1997), Appl. Environ. Microbiol. 63, 208–212.

    CAS  Google Scholar 

  18. Hobbs, S. L. A., Kpodar, P., and Delong, C. M. O. (1990), Plant Mol. Biol. 15, 851–864.

    Article  CAS  Google Scholar 

  19. Pröls, F. and Meyer, P. (1992), Plant J. 2, 465–475.

    Google Scholar 

  20. Casler, M. D. and Vogel, K. P. (1999), Crop Sci. 39, 12–20.

    Article  Google Scholar 

  21. Ziegelhoffer, J., Will, J., and Austin-Phillips, S. (1999), Mol. Breed. 5, 309–318.

    Article  CAS  Google Scholar 

  22. Armstrong, J., Inglis, G., Kawchuk, L., et al. (2002), Am. J. Potato Res. 79, 39–48.

    Article  CAS  Google Scholar 

  23. Herbers, K., Wilke, I., and Sonnewald, U. (1995), Biotechnology 13, 63–66.

    Article  CAS  Google Scholar 

  24. Kimura, T., Mizutani, T., Tanaka, T., Koyama, T., Sakka, K., and Ohmiya, K. (2003), Appl. Microbiol. Biotechnol. 62, 374–379.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Buanafina, M.M.d.O., Langdon, T., Hauck, B. et al. Maniplating the phenolic acid content and digestibility of italian ryegrass (Lolium multiflorum)b y vacuolar-targeted epession of a fungal ferulic acid esterase. Appl Biochem Biotechnol 130, 416–426 (2006). https://doi.org/10.1385/ABAB:130:1:416

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1385/ABAB:130:1:416

Index Entries

Navigation