Skip to main content
Log in

Enhancing design of immobilized enzymatic microbioreactors using computational simulation

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

In continuous-flow enzymatic microbioreactors, enzymes on the channel walls catalyze reaction(s) among feed chemicals, resulting in the production of some desirable material or the destruction of some undesirable material. Computational models of microbioreactors were developed using the CFD-ACE+ multiphysics simulation package. These models were validated via comparison with experimental data for the destruction of urea, catalyzed by urease. Similar models were then used to assess the impact of internal features on destruction efficiency. It was found that triangular features within the channels enhanced the destruction efficiency more than could be attributed to the increase in surface area alone.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Wegeng, R., Call, C., and Drost, K. (1996), Chemical System Miniaturization, PNNL-SA-27317, Pacific Northwest National Laboratory, Richland, WA.

    Google Scholar 

  2. Schuth, F. (1995), Crystallographically Defined Pore Systems: Reaction Vessels with Molecular Dimensions, Microsystem Technology for Chemical and Biological Microreactors, Max Planck Institute, Mainz, Germany.

    Google Scholar 

  3. Srinivasan, R., Hsing, I.-M., Berger, P. F., Jensen, K. F., Firebaugh, S. L., Schmidt, M. A., Harold, M. P., Lerou, J. J., and Ryley, J. (1997), AIChE J. 43(11), 3059–3069.

    Article  CAS  Google Scholar 

  4. Zheng, A.-P., Jones, F., Fang, J., and Cui, (2000), in Proceedings of the 4th International Conference on Microreaction Technology (IMRET IV), Irven Rinard (Ed.), AIChE, Atlanta, GA, pp. 284–292.

    Google Scholar 

  5. Duffy, D. C., McDonald, J. C., Schueller, O. J. A., and Whitesides, G. M. (1998), Anal. Chem. 70, 4974–4984.

    Article  CAS  Google Scholar 

  6. Jones, F., Lu, Z., and Elmore, B. (2002), Appl. Biochem. Biotechnol. 98–100, 627–640.

    Article  PubMed  Google Scholar 

  7. Jones, F., Forrest, S., Palmer, J., Lu, Z., Elmore, J., and Elmore, B. (2004), Appl. Biochem. Biotechnol. 113–116, 261–272.

    Article  PubMed  Google Scholar 

  8. Mengeaud, V., Ferrigno, R., Josserand, J., and Girault, H. (2001), in Microreaction Technology, IMRET 5: Proceedings of the Fifth International Conference on Microreaction Technology, Springer-Verlag, New York, pp. 350–358.

    Google Scholar 

  9. Marioth, E., Loebbecke, S., Scholz, M., Schnürer, F., Türcke, T., Antes, J., and Krause, H. (2001), in Microreaction Technology, IMRET 5: Proceedings of the Fifth International Conference on Microreaction Technology, M. Matlosz, W. Ehrfeld, and J. P. Baselt (Eds.), Springer-Verlag, New York, pp. 262–274.

    Google Scholar 

  10. Heo, H., and Suh, Y. (2003), in Proceedings of the First International Conference on Microchannels and Minichannels, S. G. Kandlikar, G. P. Celata, S. Nishio, P. Stephan, B. Thonon (Eds.), American Society of Mechanical Engineers, New York, pp. 249–255.

    Google Scholar 

  11. Niklas, M., and Favre-Marinet, M. (2003), in Proceedings of the First International Conference on Microchannels and Minichannels, S. G. Kandlikar, G. P. Celata, S. Nishio, P. Stephan, B. Thonon eds., American Society of Mechanical Engineers, New York, pp. 335–342.

    Google Scholar 

  12. Barz, D. and Ehrhard, P. (2003), in Proceedings of the First International Conference on Microchannels and Minichannels, S. G. Kandlikar, G. P. Celata, S. Nishio, P. Stephan, B. Thonon eds., American Society of Mechanical Engineers, New York, pp. 365–371.

    Google Scholar 

  13. CDF Research Corporation. (2003), CFD-ACE(U) User’s Manual, Huntsville, AL.

  14. Van Doormaal, J. and Raithby, G. (1984), Numer. Heat Transfer 7, 147–163.

    MATH  ADS  Google Scholar 

  15. Crowe, C., Roberson, J., and Elger, D. (2001), Engineering Fluid Mechanics, 7th ed., John Wiley & Sons, New York.

    Google Scholar 

  16. Sorrell, L. and Myerson, A., (1982), AIChE J. 28(5), 772–778.

    Article  Google Scholar 

  17. DeTurck, D., Gladney, L., and Pietrovito, A. (1996), The Interactive Textbook of PFP 96, http://dept.physics.upenn.edu/courses/gladney/mathphys/subsection4_1_7.html, University of Pennsylvania, Philadelphia.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert Bailey.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bailey, R., Jones, F., Fisher, B. et al. Enhancing design of immobilized enzymatic microbioreactors using computational simulation. Appl Biochem Biotechnol 122, 639–652 (2005). https://doi.org/10.1385/ABAB:122:1-3:0639

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1385/ABAB:122:1-3:0639

Index Entries

Navigation