Skip to main content
Log in

Cellulase production by Trichoderma reesei using sawdust hydrolysate

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Sawdust hydrolysates were investigated for their ability to support cell growth and cellulase production, and for potential inhibition of Trichoderma reesei Rut C30. Simultaneous fermentations were conducted to compare the hydrolysate-based media with the controls having equivalent concentrations of glucose and Avicel cellulose. Six hydrolysates differing in the boiling durations in the hydrolysis procedure were evaluated. The hydrolysates were found to support cell growth and induce active cellulase synthesis. The maximum specific cellulase production rate was 0.046 filter paper units (FPU)/(g of cells · h) in the hydrolysate-based systems, much higher than that (0.017 FPU/[g of cells · h]) in the controls.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Lynd, L. R., Weimer, P. J., van Zyl, W. H., and Pretorius, I. H. (2002), Microbiol. Mol. Biol. Rev. 66, 506–577.

    Article  PubMed  CAS  Google Scholar 

  2. Araujo, A. and D’Souza, J. (1980), J. Ferment. Technol. 58, 399–401.

    CAS  Google Scholar 

  3. Mohagheghi, A., Grohmann, K., and Wyman, C. E. (1988), Appl. Biochem. Biotechnol. 17, 263–277.

    CAS  Google Scholar 

  4. Shin, C. S., Lee, J. P., Lee, J. S., and Park, S. C. (2000), Appl. Biochem. Biotechnol. 84–86, 237–245.

    Article  PubMed  Google Scholar 

  5. Ladisch, M. R., Hong, J., Voloch, M., and Tsao, G. T. (1981), in Trends in the Biology of Fermentation for Fuels and Chemicals, Hollaender, A., Rabson, R., Rodgers, P., San Pietro, A., Valentine, R., and Wolfe, R., eds., Plenum, New York, pp. 55–83.

    Google Scholar 

  6. Huang, A. A. (1975), Biotechnol. Bioeng. 17, 1421–1433.

    Article  PubMed  CAS  Google Scholar 

  7. Lee, Y. H. and Fan, L. T. (1982), Biotechnol. Bioeng. 24, 2383–2406.

    Article  CAS  Google Scholar 

  8. Lee, Y. H. and Fan, L. T. (1983), Biotechnol. Bioeng. 25, 939–966.

    Article  CAS  Google Scholar 

  9. Szengyel, Z., Zacchi, G., and Reczey, K. (1997), Appl. Biochem. Biotechnol. 63–65, 351–362.

    Article  Google Scholar 

  10. Zhang, Q., Lo, C. M., and Ju, L.-K. (2004), submitted.

  11. Sternberg, D. and Mandels, G. R. (1982), Exp. Mycol. 6, 115–124.

    Article  CAS  Google Scholar 

  12. Jeong, J. M., Park, H. M., Hong, S. W., and Hah, Y. C. (1985), Misaengmul Hakhoechi 23, 77–83.

    CAS  Google Scholar 

  13. Mandels, M., Parrish, F. W., and Reese, E. T. (1962), J. Bacteriol. 83, 400–408.

    PubMed  CAS  Google Scholar 

  14. Nisizawa, T., Suzuki, H., Nakayama, M., and Nisizawa, K. (1971), J. Biochem. (Tokyo) 70, 375–385.

    CAS  Google Scholar 

  15. Sternberg, D. and Mandels, G. R. (1979), J. Bacteriol. 139, 761–769.

    PubMed  CAS  Google Scholar 

  16. Bailey, M. J. and Taehtiharju, J. (2003), Appl. Microbiol. Biotechnol. 62, 156–162.

    Article  PubMed  CAS  Google Scholar 

  17. Yasar, M., Akmaz, S., and Gurgey, I. (2001), Enzymatic hydrolysis of cellulose to glucose: Reaction kinetics and pathways. Abstracts of Papers, 222nd ACS National Meeting, BIOL-046, American Chemical Society, Washington, D.C.

    Google Scholar 

  18. Allen, A. L. and Mortensen, R. E. (1981), Biotechnol. Bioeng. 23, 2641–2645.

    Article  CAS  Google Scholar 

  19. Ju, L.-K. and Afolabi, O. A. (1999), Biotechnol. Prog. 15, 91–97.

    Article  PubMed  CAS  Google Scholar 

  20. Lee, P. and Moore, M. (2002), Two-stage dilute acid hydrolysis of mixed southern hardwood: Process evaluation and optimization, Abstracts of Papers, 223rd ACS National Meeting, CELL-066, American Chemical Society, Washington, D.C.

    Google Scholar 

  21. McMillan, J. D. (1994), in Enzymatic conversion of biomass for fuels production, Michael E. Himmel, John O. Baker, Ralph P. Overend, eds., American Chemical Society, Washington, D.C.

    Google Scholar 

  22. Palmqvist, E., Hahn-Hagerdal, B., Szengyel, Z., Zacchi, G., and Reczey, K. (1997), Enzyme Microb. Technol. 20, 286–293.

    Article  CAS  Google Scholar 

  23. Larsson, S., Palmqvist, E., Hahn-Hagerdal, B., Tengborg, C., Stenberg, K., Zacchi, G., and Nilvebrant, N.-O. (1999), Enzyme Microb. Technol. 24, 151–159.

    Article  CAS  Google Scholar 

  24. Ranatunga, T. D., Jervis, J., Helm, R. F., McMillan, J. D., and Wooley, R. J. (2000), Enzyme Microb. Technol. 27, 240–247.

    Article  PubMed  CAS  Google Scholar 

  25. Larsson, S., Reimann, A., Nilvebrant, N.-O., and Jonsson, L. J. (1999), Appl. Biochem. Biotechnol. 77–79, 91–103.

    Article  Google Scholar 

  26. Mandels, M., Andreotti, R., and Roche, C. (1976), Biotechnol. Bioeng. Symp. 6, 21–33.

    PubMed  CAS  Google Scholar 

  27. Wu, J. and Ju, L.-K. (1998), Biotechnol. Prog. 14, 649–652.

    Article  PubMed  CAS  Google Scholar 

  28. Margollas-Clark, E., Hayes, C. K., Hatman, G. E., and Penttila, M. (1996), Appl. Environ. Microbiol. 62, 2145–2151.

    Google Scholar 

  29. McMillan, J. D. (1994), in Enzymatic conversion of biomass for fuels production, Michael E. Himmel, John O. Baker, Ralph P. Overend, eds., American Chemical Society, Washington, D.C.

    Google Scholar 

  30. Marten, M. R., Velkovska, S., Khan, S. A., and Ollis, D. F. (1996), Biotechnol. Prog. 12, 602–611.

    Article  CAS  Google Scholar 

  31. Schaffner, D. W. and Toledo, R. T. (1991), Biotechnol. Bioeng. 37, 12–16.

    Article  CAS  Google Scholar 

  32. Tao, H., Gonzalez, R., Martinez, A., Rodriguez, M., Ingram, L. O., Preston, J. F., and Shanmugam, K. T. (2001), J. Bacteriol. 183, 2979–2988.

    Article  PubMed  CAS  Google Scholar 

  33. Seiboth, B., Hartl, L., Pail, M., and Kubicek, C. P. (2003), Eukaryotic Cell 2, 867–875.

    Article  PubMed  CAS  Google Scholar 

  34. Sanchez, S., Bravo, V., Castro, E., Moya, A. J., and Camacho, F. (2002), J. Chem. Technol. Biotechnol. 77, 641–648.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lu-Kwang Ju.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lo, CM., Zhang, Q., Lee, P. et al. Cellulase production by Trichoderma reesei using sawdust hydrolysate. Appl Biochem Biotechnol 122, 561–573 (2005). https://doi.org/10.1385/ABAB:122:1-3:0561

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1385/ABAB:122:1-3:0561

Index Entries

Navigation