Skip to main content
Log in

Optimization of medium by orthogonal matrix method for submerged mycelial culture and exopolysaccharide production in Collybia maculata

  • Original Articles
  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Optimization of submerged culture conditions for the production of mycelial growth and exopolysaccharides (EPSs) by Collybia maculata was investigated. The optimum temperature and the initial pH for EPS production in a shake-flask culture of C. maculata were found to be 20°C and 5.5, respectively. Among the various medium’s constituents examined, glucose, Martone A-1, K2HPO4, and CaCl2 were the most suitable carbon, nitrogen, and mineral sources for EPS production, respectively. The optimum concentration of the medium’s ingredients determined using the orthogonal matrix method was as follows: 30 g/L of glucose, 20 g/L of Martone A-1, 1g/L of K2HPO4, and 1g/L of CaCl2. Under the optimized culture conditions, the maximum concentration of EPSs in a 5-L stirred-tank reactor was 2.4 g/L, which was approximately five times higher than that in the basal medium. A comparative fermentation result showed that the EPS productivity in an airlift reactor was higher than that in the stirred-tank reactor despite the lower mycelial growth rate. The specific productivities and the yield coefficients in the airlift reactor were higher than those in the stirred-tank reactor even though the volumetric productivities were higher in the stirred-tank reactor than in the airlift reactor.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Berovic, M., Habijanic, J., Zore, I., Wraber, B., Hodzar, D., Boh, B., and Pohleven, F. (2003), J. Biotechnol. 103, 77–86.

    PubMed  CAS  Google Scholar 

  2. Bok, J. W., Lermer, L., Chilton, J., Kilingeman, H. G., and Neil Towers, G. H. (1999), Phytochemistry 51, 891–898.

    Article  PubMed  CAS  Google Scholar 

  3. Nam, K. S., Jo, Y. S., Kim, Y. H., Hyun, J. W., and Kim, H. W., (2001), Life Sci. 35, 229–237.

    Article  Google Scholar 

  4. Cheung, L. M., Cheung, P. K., and Ooi, V. C. (2003), Food Chem. 81, 249–255.

    Article  CAS  Google Scholar 

  5. Han, M. D., Lee, J. W., Jeong, H., Chung, S. K., Lee, S. Y., and Yoon, K. H. (1995), Kor. J. Mycol. 23, 209–225.

    Google Scholar 

  6. Shiao, M. S., Lee, K. R., Lin, L. J., and Wang, C. T. (1994), in Food Phytochemicals for Cancer Prevention II, American Chemical Society, Washington, DC, pp. 342–354.

    Google Scholar 

  7. White, R. W., Hackman, R. M., Soares, S. E., Beckett, L. A., and Sun, B. (2002), Urology 60, 640–644.

    Article  Google Scholar 

  8. Azam, M., Kesarwani, M., Natarajan, K., and Datta, A. (2001), Biochem. Biophys. Res. Commun. 289, 807–812.

    Article  PubMed  CAS  Google Scholar 

  9. Kuehnelt, D., Goessler, W., and Lrgolic, K. J. (1997), Appl. Organomet. Chem. 11, 289–296.

    Article  CAS  Google Scholar 

  10. Kim, S. W., Hwang, H. J., Xu, C. P., Choi, J. W., and Yun, J. W. (2003), Lett. Appl. Microbiol. 36, 321–326.

    Article  PubMed  CAS  Google Scholar 

  11. Biazar, J., Tango, M., Babolian, E., and Islam, R. (2003), Appl. Math. Comput. 144, 433–439.

    Article  MATH  MathSciNet  Google Scholar 

  12. Park, J. P., Kim, S. W., Hwang, H. J., and Yun, J. W. (2001), Lett. Appl. Microbiol. 33, 76–81.

    Article  PubMed  CAS  Google Scholar 

  13. Yang, F. C., and Liau, C. B. (1998), Bioprocess Eng. 19, 233–236.

    Google Scholar 

  14. Kim, S. W., Hwang, H. J., Xu, C. P., Na, Y. S., Song, S. K., and Yun, J. W. (2002), Lett. Appl. Microbiol. 34, 389–393.

    Article  PubMed  CAS  Google Scholar 

  15. Cho, D. H., Chae, H. J., and Kim, E. Y. (2001), Appl. Biochem. Biotechnol. 95, 183–193.

    Article  PubMed  CAS  Google Scholar 

  16. Bae, J. E., Sinha, J., Park, J. P., Song, C. H., and Yun, J. W. (2000), J. Microbiol. Biotechnol. 10, 482–487.

    CAS  Google Scholar 

  17. Griffin, D. H. (1994), Fungal Physiology, 2nd ed., Wiley-Liss, New York.

    Google Scholar 

  18. Jonathan, S. G. and Fasidi, I. O. (2001), Food Chem. 72, 479–483.

    Article  CAS  Google Scholar 

  19. Chardonnet, C. O., Sams, C. E., and Conway, W. S. (1999), Phytochemistry 25, 967–973.

    Article  Google Scholar 

  20. MacAtrain, P., Jacquier, J. C., and Dawson, K. A. (2003), Carbohydr. Polym. 53, 395–400.

    Article  Google Scholar 

  21. Xu, C. P., Kim, S. W., Hwang, H. J., Choi, J. W., and Yun, J. W. (2003), Process Biochem. 38, 1025–1030.

    Article  CAS  Google Scholar 

  22. He, Y. and Lee, H. K. (1998), J. Chromatogr. 793, 331–340.

    Article  CAS  Google Scholar 

  23. Huang, C. T., Su, Y. Y., and Hsieh, Y. Z. (2002), J. Chromatogr. 977, 9–16.

    Article  CAS  Google Scholar 

  24. Prihardi, K., Kengo, K., Toshiharu, I., Jun, H., Mami, K., and Mitsuyasu, O. (2002), J. Biosci. Bioeng. 93, 274–280.

    Article  Google Scholar 

  25. Emilio, M. G., Yusuf, C., and Murray, M. Y. (1997), J. Biotechnol. 54, 195–210.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lim, J.M., Kim, S.W., Hwang, H.J. et al. Optimization of medium by orthogonal matrix method for submerged mycelial culture and exopolysaccharide production in Collybia maculata . Appl Biochem Biotechnol 119, 159–170 (2004). https://doi.org/10.1385/ABAB:119:2:159

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1385/ABAB:119:2:159

Index Entries

Navigation