Skip to main content
Log in

Quantitative analysis of cellulose-reducing ends

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Methods for the quantification of total and accessible reducing ends on traditional cellulose substrates have been evaluated because of their relevance to enzyme-catalyzed cellulose saccharification. For example, quantification of accessible reducing ends is likely to be the most direct measure of substrate concentration for the exo-acting, reducing end-preferring cellobiohydrolases. Two colorimetric assays (dinitrosalicylic acid [DNS] and bicinchoninic acid [BCA] assay) and a radioisotope approach (NaB3H4 labeling) were evaluated for this application. Cellulose substrates included microcrystalline celluloses, bacterial celluloses, and filter paper. Estimates of the number of reducing ends per unit mass cellulose were found to be dependent on the assay system (i.e. the DNS and BCA assays gave strikingly different results). DNS-based values were several-fold higher than those obtained using the BCA assay, with fold-differences being substrate specific. Sodium borohydride reduction of celluloses, using cold or radiolabeled reagent under relatively mild conditions, was used to assess the number of surface (solvent-accessible) reducing ends. The results indicate that 30–40% of the reducing ends on traditional cellulose substrates are not solvent accessible; that is, they are buried in the interior of cellulose structures and thus not available to exo-acting enzymes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Gilkes, N. R., Henrissat, B., Kilburn, D. G., Miller, R. C. Jr., and Warren, R. A. J. (1991), Microbiol. Rev. 55, 303–315.

    PubMed  CAS  Google Scholar 

  2. Henrissat, B. (1991), Biochem. J. 280, 309–316.

    PubMed  CAS  Google Scholar 

  3. Goyal, A., Ghosh, B., and Eveleigh, D. (1991), Bioresour. Technol. 36, 37–50.

    Article  CAS  Google Scholar 

  4. Tomme, P., Warren, R. A. J., and Gilkes, N. R. (1995), Adv. Microb. Physiol. 37, 1–81.

    Article  PubMed  CAS  Google Scholar 

  5. Davies, G. and Henrissat, B. (1995), Structure 3, 853–859.

    Article  PubMed  CAS  Google Scholar 

  6. Henrissat, B., Callebaut, I., Faberega, S., Lehn, P., Mormon, J. P., and Davies, G. (1995), Proc. Natl. Acad. Sci. USA 92, 7090–7094.

    Article  PubMed  CAS  ADS  Google Scholar 

  7. Teeri, T. T. (1997), Trends Biotechnol. 160, 155–195.

    Google Scholar 

  8. Schulein, M. (2000), Biochimg Biophys Acta 1543, 239–252.

    CAS  Google Scholar 

  9. Henrissat, B. and Davies, G. (1997), Curr. Opin. Struct. Biol. 7, 637–644.

    Article  PubMed  CAS  Google Scholar 

  10. Divne, C., Stahlberg, J., Teeri, T. T., and Jones, T. A. (1998), J. Mol. Biol. 275, 309–325.

    Article  PubMed  CAS  Google Scholar 

  11. Zou, J. Y., Kleywegt, G. J., Stahlberg, J., Driguez, H., Nerinckx, W., Claeyssens, M., Koivula, A., Teeri, T. T., and Jones, T. A. (1999), Structure 7, 1035–1045.

    Article  PubMed  CAS  Google Scholar 

  12. Koivula, A., Laura, R., Gerd, W., et al. (2002), J. Am. Chem. Soc. 124, 10,015–10,024.

    Article  CAS  Google Scholar 

  13. White, A. and Rose, D. R. (1997), Curr. Opin. Struct. Biol. 7, 645–651.

    Article  PubMed  CAS  Google Scholar 

  14. Bayer, E. A., Chanzy, H., Lamed, R., and Shoham, Y. (1998), Curr. Opin. Struct. Biol. 8, 548–557.

    Article  PubMed  CAS  Google Scholar 

  15. Medve J., Karlsson, J., Lee, D., and Tjerneld, F. (1998), Biotechnol. Bioeng. 59, 621–634.

    Article  PubMed  CAS  Google Scholar 

  16. Nidetzky, B., Steiner, W., and Claeyssens, M. (1995), in Enzymatic Degradation of Insoluble Carbohydrate. Saddler, J. N. and Penner, M. H., eds., American Chemical Society, Washington, DC, pp. 90–112.

    Google Scholar 

  17. Gama, F. M., Teixeira, J. A., and Mota, M. (1994), Biotechnol. Bioeng. 43, 381–387.

    Article  CAS  Google Scholar 

  18. Lin, J. K., Ladisch, M. R., Patterson, J. A., and Noller, C. H. (1987), Biotechnol. Bioeng. 24, 976–981.

    Article  Google Scholar 

  19. Neuman, R. P. and Walker, L. P. (1992), Biotechnol. Bioeng. 40, 218–225.

    Article  CAS  Google Scholar 

  20. Walker, L. P., Wilson, D. B., Irwin, D. C., McQuire, C., and Price, M. (1992), Biotechnol. Bioeng. 40, 1019–1026.

    Article  CAS  Google Scholar 

  21. Grethlein, H. E. (1978), Biotechnol. Bioeng. 20, 503–525.

    Article  CAS  Google Scholar 

  22. Isogai, A. and Atalla, R. H. (1991), J. Polyma Sci.: Part A. Polyma Chem. 29, 113–119.

    Article  CAS  Google Scholar 

  23. Ståhlberg, J., Johasson, G., and Peterson, G. (1993), Biochim. Biophys. Acta 1157, 107–113.

    PubMed  Google Scholar 

  24. Hestrin, S. (1963), Methods Carbohydr. Chem. 3, 4–9.

    CAS  Google Scholar 

  25. Gilkes, N. R., Jervis, E., Henrissat, B., Tekant, B., Miller, R. C. Jr., Warren, R. A. J., and Kilburn, D. G. (1992), J. Biol. Chem. 267, 6743–6749.

    PubMed  CAS  Google Scholar 

  26. Ghose, T. K. (1987), Pure Appl. Chem. 59, 257–268.

    CAS  Google Scholar 

  27. Nelson, N. J. (1944), J. Biol. Chem. 153, 375–380.

    CAS  Google Scholar 

  28. Robyt, J. F. and Whelan, W. J. (1972), Anal. Biochem. 45, 510–516.

    Article  PubMed  CAS  Google Scholar 

  29. Lever, M. (1972), Anal. Biochem. 47, 273–279.

    Article  PubMed  CAS  Google Scholar 

  30. Garcia, E., Johnston, D., Whitaker, J., and Shoemaker, S. (1993), J. Food Biochem. 17, 135–145.

    Article  CAS  Google Scholar 

  31. Johnston, D. B., Shoemaker, S. P., Smith, G. M., and Whitaker, J. R. (1998), J. Food Biochem. 22, 301–319.

    Article  CAS  Google Scholar 

  32. Irwin, D. C., Spezio, M., Walker, L. P, and Wilson, D. B. (1993), Biotechnol. Bioeng. 42, 1002–1013.

    Article  CAS  Google Scholar 

  33. Conrad, H. E., Bamburg, J. R., Epley, J. D., and Kindt, T. J. (1966), Biochemistry 5, 2808–2817.

    Article  PubMed  CAS  Google Scholar 

  34. Boraston, A. B., Creagh, A. L., Alam, M. M., Kormos, J. M., Tomme, P., Haynes, C. A., Warren, R. A. J., and Kilburn, D. G. (2001), Biochemistry 40, 6240–6247.

    Article  PubMed  CAS  Google Scholar 

  35. Kruus, K., Wang, W. K., Ching, J. and Wu, J. H. D. (1995), J. Bacteriol. 177, 1641–1644.

    PubMed  CAS  Google Scholar 

  36. Irwin, D., Shin, D. H., Zhang, S., Barr, B. K., Sakon, J., Karplus, P. A., and Wilson, D. B. (1998), J. Bacteriol. 180, 1709–1714.

    PubMed  CAS  Google Scholar 

  37. Kim, E., Irwin, D. C., Walker, L. P., and Wilson, D. B. (1998), Biotechnol. Bioeng. 58, 494–501.

    Article  PubMed  CAS  Google Scholar 

  38. Zhang, S., Wolfgang, D. E., and Wilson, D. B. (1999), Biotechnol. Bioeng. 66, 35–41.

    Article  PubMed  CAS  Google Scholar 

  39. Zhang, S., Barrt, B. K., and Wilson, D. B. (2000), Eur. J. Biochem. 267, 244–252.

    Article  PubMed  CAS  Google Scholar 

  40. Zhang, S., Irwin, D. C., and Wilson, D. B. (2000), Eur. J. Biochem. 267, 3101–3115.

    Article  PubMed  CAS  Google Scholar 

  41. Kulshreshtha, A. K. and Dweltz, N. E. (1973), J. Polym. Sci. Polym. Phys. Ed. 11, 487–497.

    CAS  Google Scholar 

  42. Brooks, R. D. and Thompson, N. S. (1966), TAPPI. J. 49, 362–366.

    CAS  Google Scholar 

  43. Liaw, E. T. (1994), PhD thesis, Oregon State University, Corvallis, OR.

    Google Scholar 

  44. Stalbrånd, H., Mansfield, S. D., Saddler, J. N., Kilburn, D. G., Warren, R. A. J., and Gilkes, N. R. (1998), Appl. Environ. Microbiol. 64, 2374–2379.

    PubMed  Google Scholar 

  45. Michell, A. J. (1993), Cell. Chem. Technol. 27, 3–15.

    CAS  Google Scholar 

  46. Fan, L. T., Lee, Y. H., and David, H. B. (1980), Biotechnol. Bioeng. 22, 177–199.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael H. Penner.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kongruang, S., Han, M.J., Breton, C.I.G. et al. Quantitative analysis of cellulose-reducing ends. Appl Biochem Biotechnol 113, 213–231 (2004). https://doi.org/10.1385/ABAB:113:1-3:213

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1385/ABAB:113:1-3:213

Index Entries

Navigation