, Volume 57, Issue 9, pp 40–45 | Cite as

Berechnung nach dem Kohäsivzonenmodell (Teil 2)

Crashverhalten von Klebverbindungen
  • Markus Brede
  • Olaf Hesebeck
  • Stephan Marzi
  • Michael May
  • Hans Voß
Aus Forschung und Entwicklung


  1. [1]
    Silva, L da; Neves, P das; Adams, R; Spelt, J: Analytical models of adhesively bonded joints — Part I: Literature survey. In: International Journal of Adhesion and Adhesives 29 (2009), S. 319–330CrossRefGoogle Scholar
  2. [2]
    He, X: A review of finite element analysis of adhesively bonded joints. In: International Journal of Adhesion and Adhesives 31 (2011), S. 248–264CrossRefGoogle Scholar
  3. [3]
    Dugdale, D: Yielding of steel sheets containing slits. In: Journal of the Mechanics and Physics of Solids 8 (1960), S. 100–104CrossRefGoogle Scholar
  4. [4]
    Barenblatt, G: The mathematical theory of equilibrium cracks in brittle fracture. In: Advances in applied Mechanics VII (1962), S. 55–125CrossRefGoogle Scholar
  5. [5]
    Hillerborg, A; Modeer, M; Petersson, PE: Analysis of crack formation and crack growth in concrete by means of fracture mechanics and finite elements. In: Cement and Concrete Research 6 (1976), S. 773–382CrossRefGoogle Scholar
  6. [6]
    Rahulkumar, P; Jagota, A; Bennison, S; Saigal, S: Cohesive element modeling of viscoelastic fracture: application to peel testing of ppolymers. In: International Journal of Solids and Structures 37 (2000), S. 1873–1897CrossRefGoogle Scholar
  7. [7]
    P676, FOSTAProjekt: Methodenentwicklung zur Berechnung von höherfesten Stahlklebverbindungen des Fahrzeugbaus und Crashbelastung. IFAM Bremen, IfM Kassel, LTM Paderborn, LWF Paderborn, IFS Braunschweig, IWM Freiburg, EMI Freiburg, Laufzeit 20042007Google Scholar
  8. [8]
    Johnson, R; Cook, W: A constitutive model and data for metals subjected to large strains, high strain rates and high temperatures. In: Proceedings of the 7th International Symposium on Ballistics. Den Haag, 1983Google Scholar
  9. [9]
    Samudrala, O; Huang, Y; Rosakis, A: Subsonic and intersonic mode II crack propagation with a ratedependent cohesive zone. In: Journal of the Mechanics and Physics of Solids 50 (2002), S. 1231–1268CrossRefGoogle Scholar
  10. [10]
    Marzi, S; Hesebeck, O; Brede, M; Kleiner, F: A ratedependent elastoplastic cohesive zone mixedmode model for crash analysis of adhesively bonded joints. In: Proceedings of the 7th European LSDYNA Conference. Salzburg, 2009Google Scholar
  11. [11]
    LSDYNA: Keyword Users Manual Volume II: Material Models. Livermore Software Technology Corporation, 2010Google Scholar
  12. [12]
    M. May, M. Nossek, N. Petrinic, S. Hiermaier; A new rate dependent cohesive zone model for impact applications, 3rd ECCOMAS Thematic Conference on the Mechanical Response of Composites (Composites 2011), 21–23 September 2011, Hannover.Google Scholar
  13. [13]
    Michael May, Holger Voß, Stefan Hiermaier; Predictive modeling of damage and failure in adhesively bonded metallic joints using cohesive interface elements; angenommen bei International Journal of Adhesion and Adhesives am 12.03.2013.Google Scholar
  14. [14]
    Camanho, PP; Davila, CG; Moura, MF: Numerical simulation of mixedmode progressive delamination in composite materials. In: Journal of Composite Materials (2003), S. 1415–1438Google Scholar
  15. [15]
    Benzeggagh, M; Kenanae, M: Measurement of mixedmode delamination fracture toughness of unidirectional flass/epoxy composites with mixedmode bending apparatus. In: Composites Science and Technology 56 (1996), S. 439–449CrossRefGoogle Scholar
  16. [16]
    Marzi, S; Hesebeck, O; Brede, M; Kleiner, F: A ratedependent cohesive zone model for adhesively bonded joints loaded in mode I. In: Journal of Adhesion Science and Technology 23 (2009), S. 881–898Google Scholar
  17. [17]
    Böhme, W.; Lienhard, J.; Memhard, D.: Charakterisierung und Modellierung von StahlKlebverbindungen bei crashartiger Zug und ScherBelastung. In: Tagung Werkstoffprüfung 2012, Bad Neuenahr, Tagungsband S. 255280 (2012)Google Scholar
  18. [18]
    Edde, F C.; Verreman, Y: Nominally constant strain energy release rate specimen for the study of Mode II fracture and fatigue in adhesively bonded joints. In: International Journal of Adhesion and Adhesives15 (1995), S. 29–32CrossRefGoogle Scholar
  19. [19]
    Qiao, P; Wang, J; Davalos, J: Analysis of tapered ENF specimen and characterization of bonded interface fracture under Mode II loading. In: International Journal of Solids and Structures 40 (2003), S. 1865–1884CrossRefGoogle Scholar
  20. [20]
    Michael May, Holger Voß; Experimental and Numerical Analyses of Adhesively Bonded Tjoints Under Crash Loading; 10th International DYMAT Conference, DYMAT 2012, Freiburg.Google Scholar

Copyright information

© Springer Fachmedien Wiesbaden 2013

Authors and Affiliations

  • Markus Brede
    • 1
  • Olaf Hesebeck
    • 1
  • Stephan Marzi
    • 1
  • Michael May
    • 2
  • Hans Voß
    • 2
  1. 1.Fraunhofer Institut für Fertigungstechnik und Angewandte Materialforschung (IFAM)FreiburgDeutschland
  2. 2.Fraunhofer-Institut für Kurzzeit-dynamikErnst-Mach Institut (EMI)FreiburgDeutschland

Personalised recommendations