Skip to main content
Log in

Review on Mathematical Modelling of Electroencephalography (EEG)

  • Survey Article
  • Published:
Jahresbericht der Deutschen Mathematiker-Vereinigung Aims and scope Submit manuscript

Abstract

The paper reviews mathematical and numerical aspects in EEG modelling and gives researchers new in this field an overview about the state-of-the-art results and techniques on the topic. The classical dipolar source model is presented for modelling the electrical activity of the brain and several discretization methods for solving the forward model are described. Theoretical results from the mathematical analysis of the forward and inverse problem are given and an overview of the most popular numerical methods for solving the inverse problem is presented. A specific case study for EEG modelling in neonates highlights current questions that are actually asked by the clinicians.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Adde, G.: Méthodes de traitement d’images appliquées au problème inverse en Magnéto-Electro-Encéphalographie. Thèse de doctorat (2005)

  2. Adde, G., Clerc, M., Faugeras, O., Keriven, R., Kybic, J., Papadopoulo, T.: Symmetric BEM formulation for the M/EEG forward problem. In: Information Processing in Medical Imaging, pp. 524–535. Springer, Berlin (2003)

    Chapter  Google Scholar 

  3. Akalin Acar, Z., Makeig, S.: Effects of forward model errors on EEG source localization. Brain Topogr. 26, 378–396 (2013)

    Article  Google Scholar 

  4. Azizollahi, H., Darbas, M., Diallo, M.M., El Badia, A., Lohrengel, S.: EEG in neonates: forward modelling and sensitivity analysis with respect to variations of the conductivity. Math. Biosci. Eng. 15, 905–932 (2018). https://doi.org/10.3934/mbe.2018041.

    Article  MathSciNet  Google Scholar 

  5. Azizollahi, H., Aarabi, A., Wallois, F.: Effects of uncertainty in head tissue conductivity and complexity on EEG forward modelling in neonates. Hum. Brain Mapp. 37(10), 3604–3622 (2016)

    Article  Google Scholar 

  6. Baillet, S.: Toward Functional Brain Imaging of Cortical Electrophysiology Markovian Models for Magneto and Electroencephalogram Source Estimation and Experimental Assessments. Ph.D. thesis, University of Paris Orsay, France (1998)

  7. Baillet, S., Mosher, J.C., Leahy, R.M.: Electromagnetic brain mapping. IEEE Signal Process. Mag. 18(6), 14–30 (2001)

    Article  Google Scholar 

  8. Baillet, S., Tadel, F., Leahy, R.M., Mosher, J.C., Delorme, A., Makeig, S., Oostenveld, R., Hämäläinen, M., Dalal, S.S., Zumer, J., Clerc, M., Wolters, C.H., Kiebel, S., Jensen, O.: Academic Software Toolboxes for the Analysis of MEG Data. In: IFMBE Proceedings BIOMAG2010, Dubrovnik, Croatia, vol. 28 (2010)

    Google Scholar 

  9. Baratchart, L., Leblond, J., Mandrea, F., Saff, E.B.: How can meromorphic approximation help to solve some 2D inverse problems for the Laplacian? Inverse Probl. 15, 79–90 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  10. Baratchart, L., Ben Abda, A., Ben Hassen, F., Leblond, J.: Recovery of pointwise sources or small inclusions in 2D domains and rational approximation. Inverse Probl. 21, 51–74 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  11. Baratchart, L., Leblond, J., Marmorat, J.-P.: Inverse source problem in a 3D ball from best meromorphic approximation on 2D slices. Electron. Trans. Numer. Anal. 25, 41–53 (2006)

    MathSciNet  MATH  Google Scholar 

  12. Bassila, R., Clerc, M., Leblond, J., Marmorat, J.-P., Papadopoulo, T.: (2008). http://www-sop.inria.fr/apics/FindSources3D/

  13. Berg, P., Scherg, M.: A fast method for forward computation of multiple-shell spherical head models. Electroencephalogr. Clin. Neurophysiol. 90, 58–64 (1994)

    Article  Google Scholar 

  14. Chen, H., Halleza, F., Staelens, S.: Influence of skull conductivity perturbations on EEG dipole source analysis. Med. Phys. 37(8), 4475–4484 (2010)

    Article  Google Scholar 

  15. Cho, J.-H., Vorweck, J., Wolters, C.H., Knösche, T.R.: Influence of the head model on EEG and MEG source connectivity analyses. NeuroImage 10, 60–77 (2015)

    Article  Google Scholar 

  16. Christiansen, S., Nédélec, J.C.: A preconditioner for the electric field integral equation based on Calderon formulas. SIAM J. Numer. Anal. 40, 1100–1135 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  17. Clerc, M., Kybic, J.: Cortical mapping by Laplace?Cauchy transmission using a boundary element method. Inverse Probl. 23, 2589–2601 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  18. Clerc, M., Leblond, J., Marmorat, J.-P., Papadopoulo, T.: Source localization in EEG using rational approximation on plane sections. Inverse Probl. 28, 055018 (2012)

    Article  MATH  Google Scholar 

  19. Colton, D.L., Kress, R.: Integral Equation Methods in Scattering Theory. Pure and Applied Mathematics. Wiley, New York (1983)

    MATH  Google Scholar 

  20. Dannhauer, M., Lanfer, B., Wolters, C.H., Knösche, T.R.: Modelling of the human skull in EEG source analysis. Hum. Brain Mapp. 32(9), 1383–1399 (2011)

    Article  Google Scholar 

  21. Darbas, M., Diallo, M.M., El Badia, A., Lohrengel, S.: An inverse dipole source problem in inhomogeneous media: application to the EEG source localization in neonates. Submitted

  22. Diallo, M.M.: Problème inverse de sources en Electro-Encéphalo-Graphie chez le nouveau-né. Ph.D. thesis, Université de Picardie Jules Verne, Amiens, France (2017)

  23. El Badia, A., El Hajj, A.: Hölder stability estimates for some inverse pointwise source problems. C. R. Math. Acad. Sci. (Paris) 350(23–24), 1031–1035 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  24. El Badia, A., Farah, M.: Identification of dipole sources in an elliptic equation from boundary measurements: application to the inverse EEG problem. J. Inverse Ill-Posed Probl. 14, 331–353 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  25. El Badia, A., Farah, M.: A stable recovering of dipole sources from partial boundary measurements. Inverse Probl. 26, 115006 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  26. El Badia, A., Ha-Duong, T.: An inverse source problem in potential analysis. Inverse Probl. 16, 651–663 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  27. Engwer, C., Vorwerk, J., Ludewig, J., Wolters, C.H.: A discontinuous Galerkin method for the EEG forward problem. SIAM J. Sci. Comput. 39(1), B138–B164 (2017)

    Article  MATH  Google Scholar 

  28. Farah, M.: Problèmes inverses de sources et lien avec l’Electro-encéphalo-graphie. Ph.D. thesis, Université de Technologie de Compiègne, France (2007)

  29. Gargiulo, P., Belfiore, P., Friogeirsson, E.A., Vanhalato, S., Ramon, C.: The effect of fontanel on scalp EEG potentials in the neonate. Clin. Neurophysiol. 126, 1703–1710 (2015)

    Article  Google Scholar 

  30. Geddes, L.A., Baker, L.E.: The specific resistance of biological material - a compendium of data for the biomedical engineer and physiologist. Med. Bio. Eng 5(3), 271–293 (1967)

    Article  Google Scholar 

  31. Geselowitz, D.B.: On bioelectric potentials in an homogeneous volume conductor. Biophys. J. 7, 1–11 (1967)

    Article  Google Scholar 

  32. Gramfort, A., Papadopoulo, T., Olivi, E., Clerc, M.: OpenMEEG: opensource software for quasistatic bioelectromagnetics. Biomed. Eng. Online 9, 45 (2010)

    Article  Google Scholar 

  33. Grech, R., Cassar, T., Muscat, J., Camilleri, K.P., Fabri, S.G., Zervakis, M., Xanthopoulos, P., Sakkalis, V., Vanrumste, B.: Review on solving the inverse problem in EEG source analysis. J. Neuro. Rehabil. 5(25), 1–33 (2008). https://doi.org/10.1186/1743-0003-5-25

    Google Scholar 

  34. Hallez, H., Vanrumste, B., Van Hese, P., D’Asseler, Y., Lemahieu, I., Van de Walle, R.: A finite difference method with reciprocity used to incorporate anisotropy in electroencephalogram dipole source localization. Phys. Med. Biol. 50, 3787–3806 (2005)

    Article  Google Scholar 

  35. Hallez, H., Vanrumste, B., Grech, R., Muscat, J., De Clercq, W., Vergult, A., D’Asseler, Y., Camilleri, K.P., Fabri, S.G., Van Huffel, S.: Review on solving the forward problem in EEG source analysis. J. NeuroEng. Rehabil. 4(1), 46 (2007)

    Article  Google Scholar 

  36. Hämäläinen, M.S., Hari, R., Ilmoniemi, R.J., Knuutila, J., Lounasamaa, O.V.: Magnetoencephalography—theory, instrumentation, and applications to noninvasive studies of the working human brain. Rev. Mod. Phys. 65(2), 413–497 (1993)

    Article  Google Scholar 

  37. Hämäläinen, M.S., Ilmoniemi, R.J.: Interpreting Measured Magnetic of the Brain: Estimates of Current Distributions. Technical Report TKK-F-A559, Helsinki University of Technology, Espoo (1984)

  38. Hämäläinen, M.S., Sarvas, J.: Realistic conductivity geometry model of the human head for interpretation of neuromagnetic data. IEEE Trans. Biomed. Eng. 36(2), 165–171 (1989)

    Article  Google Scholar 

  39. Haueisen, J., Tuch, D., Ramon, C., Schimpf, P., Wedeen, V., George, J., Belliveau, J.: The influence of brain tissue anisotropy on human EEG and MEG. NeuroImage 15, 159–166 (2002)

    Article  Google Scholar 

  40. Hecht, F., Pironneau, O., Le Hyaric, A., Ohtsuka, K.: FreeFem++ Manual (2014)

  41. Hédou, V.: A finite difference method to solve the forward problem in electroencephalography (EEG). J. Comput. Appl. Math. 167, 35–58 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  42. Kellogg, O.D.: Foundations of Potential Theory. Dover, New York (1953)

    MATH  Google Scholar 

  43. Kohn, R.V., Vogelius, M.: Relaxation of a variational method of impedance computed tomography. Commun. Pure Appl. Math. 40, 745–777 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  44. Kozlov, V.A., Maz’ya, V.G., Fomin, A.V.: An iterative method for solving the Cauchy problem for elliptic equations. Comput. Math. Phys. 31, 45–52 (1991)

    MathSciNet  MATH  Google Scholar 

  45. Kress, R.: Linear Integral Equations. Applied Mathematical Sciences, vol. 82. Springer, Berlin (1999)

    MATH  Google Scholar 

  46. Kybic, J., Clerc, M., Abboud, T., Faugeras, O., Keriven, R., Papadopoulo, T.: A common formalism for the integral formulations of the forward EEG problem. IEEE Trans. Med. Imaging 24(1), 12–28 (2005)

    Article  Google Scholar 

  47. Kybic, J., Clerc, M., Faugeras, O., Keriven, R., Papadopoulo, T.: Fast multipole acceleration of the MEG/EEG boundary element method. Phys. Med. Biol. 50, 4695–4710 (2005)

    Article  Google Scholar 

  48. Kybic, J., Clerc, M., Faugeras, O., Keriven, R., Papadopoulo, T.: Generalized head models for MEG/EEG: boundary element method beyond nested volumes. Phys. Med. Biol. 51, 1333–1346 (2006)

    Article  Google Scholar 

  49. Lanfer, B., Scherg, M., Dannhauer, M., Knösche, T.R., Burger, M., Wolters, C.H.: Influences of skull segmentation inaccuracies on EEG source analysis. NeuroImage 62(1), 418–431 (2014)

    Article  Google Scholar 

  50. Lew, S., Wolters, C.H., Dierkes, T., Röer, C., MacLeod, R.S.: Accuracy and run-time comparison for different potential approaches and iterative solvers in finite element method based EEG source analysis. Appl. Numer. Math. 59(8), 1970–1988 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  51. Mordecai, A.: Nonlinear Programming: Analysis and Methods. Dover, New York (2003)

    MATH  Google Scholar 

  52. Lew, S., Silva, D.D., Choe, M., Ellen Grant, P., Okada, Y., Wolters, C.H., Hämäläinen, M.S.: Effects of sutures and fontanels on MEG and EEG source analysis in a realistic infant head model. NeuroImage 76, 282–293 (2013)

    Article  Google Scholar 

  53. Love, A.E.H.: A Treatise of Mathematical Theory of Elasticity. Cambridge University Press, Cambridge (1927)

    MATH  Google Scholar 

  54. Meijs, J.W.H., Weier, O.W., Peters, M.J., van Oosterom, A.: On the numerical accuracy of the boundary element method. IEEE Trans. Biomed. Eng. 36(10), 1038–1049 (1989)

    Article  Google Scholar 

  55. Montes-Restrepo, V., van Mierlo, P., Strobbe, G., Staelens, S., Vandenberghe, S., Hallez, H.: Influence of skull modeling approaches on EEG source localization. Brain Topogr. 27(1), 95–111 (2014)

    Article  Google Scholar 

  56. Mosher, J.C., Lewis, P.S., Leahy, R.M.: Multiple dipole modeling and localization from spatio-temporal MEG data. IEEE Trans. Biomed. Eng. 39(6), 541–557 (1992)

    Article  Google Scholar 

  57. de Munck, J.C., Peters, M.J.: A fast method to compute the potential in the multisphere model. IEEE Trans. Biomed. Eng. 40, 1166–1174 (1993)

    Article  Google Scholar 

  58. Nédélec, J.-C.: Acoustic and Electromagnetic Equations. Applied Mathematical Sciences, vol. 144. Springer, New York (2001)

    MATH  Google Scholar 

  59. Odabaee, M., Tokariev, A., Layeghy, S., Mesbah, M., Colditz, P.B., Ramon, C., Vanhatalo, S.: Neonatal EEG at scalp is focal and implies high skull conductivity in realistic neonatal head models. NeuroImage 96, 73–80 (2014)

    Article  Google Scholar 

  60. Ortiz G, J.E., Pillain, A., Rahmouni, L., Andriulli, F.P.: A Calderon regularized symmetric formulation for the electroencephalography forward problem. J. Comput. Phys., 1–21 (2018)

  61. Papageorgakis, C.: Modèles de conductivité patient-spécifiques: caractérisation de l’os du crâne. Ph.D. thesis, INRIA Sophia, Université Côte d’Azur (2017)

  62. Pascual-Marqui, R.D.: Review of methods for solving the EEG inverse problem. Int. J. Bioelectromagn. 1, 75–86 (1999)

    Google Scholar 

  63. Pascual-Marqui, R.D.: Standardized low resolution brain electromagnetic tomography (sLORETA): technical details. Methods Find. Exp. Clin. Pharmacol. 24D, 5–12 (2002). (Author’s version)

    Google Scholar 

  64. Pursiainen, S., Lew, S., Wolters, C.H.: Forward and inverse effects of the complete electrode model in neonatal EEG. J. Neurophysiol. 117(3), 876–884 (2017)

    Article  Google Scholar 

  65. Roche-Labarbe, N., Aarabi, A., Kongolo, G., Gondry-Jouet, C., Dümpelmann, M., Grebe, R., Wallois, F.: High-resolution electroencephalography and source localization in neonates. Hum. Brain Mapp. 29, 167–176 (2008)

    Article  Google Scholar 

  66. Rush, S., Driscoll, D.A.: Current distribution in the brain from surface electrodes. Anesth. Analg. 47, 717–723 (1967)

    Google Scholar 

  67. Saad, Y.: Iterative Methods for Sparse Linear Systems. PWS-Kent, Boston (1996)

    MATH  Google Scholar 

  68. de Saint-Venant, A.J.C.B.: Mémoire sur la torsion des prismes. Mem. Divers Savants 14, 233–560 (1855)

    Google Scholar 

  69. Salo, M.: Unique continuation for elliptic equations Notes Fall (2014)

  70. SimBio: A generic environment for bio-numerical simulations. https://www.mrt.uni-jena.de/simbio

  71. Steinbach, O., Wendland, W.L.: The construction of some efficient preconditioners in the boundary element method. Adv. Comput. Math. 9, 191–216 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  72. Vorwerk, J.: Comparison of Numerical Approaches to the EEG Forward Problem. Master’s thesis, University of Münster, Germany (2011)

  73. Vorwerk, J.: New Finite Element Methods to Solve the EEG/MEG Forward Problem. Ph.D. thesis, University of Münster, Münster, Germany (2016)

  74. Wolters, C.H., Köstler, H., Möller, C., Härdtlein, J., Grasedyck, L., Hackbusch, W.: Numerical mathematics of the subtraction method for the modelling of a current dipole in EEG source reconstruction using finite element head models. SIAM J. Sci. Comput. 30, 24–45 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  75. Wolters, C.H., Anwander, A., Tricoche, X., Weinstein, D., Koch, M.A., MacLeod, R.S.: Influence of tissue conductivity anisotropy on EEG/MEG field and return current computation in a realistic head model: a simulation and visualization study using high-resolution finite element modelling. NeuroImage 30(3), 818–826 (2006)

    Article  Google Scholar 

  76. Xu, X., Xu, B., He, B.: An alternative subspace approach to EEG dipole source localization. Phys. Med. Biol. 49, 327–343 (2004)

    Article  Google Scholar 

  77. Yitembe, B.R.: Reduction of Conductivity Uncertainty Propagations in the Inverse Problem of EEG Source Analysis. Ph.D. thesis, University of Gent (2011)

  78. Zhang, S.: A fast method to compute surface potentials generated by dipoles within multilayer anisotropic spheres. Phys. Med. Biol. 40, 335–349 (1995)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marion Darbas.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Darbas, M., Lohrengel, S. Review on Mathematical Modelling of Electroencephalography (EEG). Jahresber. Dtsch. Math. Ver. 121, 3–39 (2019). https://doi.org/10.1365/s13291-018-0183-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1365/s13291-018-0183-z

Keywords

Mathematics Subject Classification (2010)

Navigation