Vitor Araújo and Maria José Pacifico: “Three Dimensional Flows”

Springer, 2010
Buchbesprechung
  • 54 Downloads

References

  1. 1.
    Béguin, F.: Smale diffeomorphisms of surfaces: a classification algorithm. Discrete Contin. Dyn. Syst. 11(2–3), 261–310 (2004) MathSciNetMATHCrossRefGoogle Scholar
  2. 2.
    Bonatti, C., Gourmelon, N., Vivier, T.: Perturbations of the derivative along periodic orbits. Ergod. Theory Dyn. Syst. 26(5), 1307–1337 (2006) MathSciNetMATHCrossRefGoogle Scholar
  3. 3.
    Bonatti, C., Langevin, R.: Difféomorphismes de Smale des surfaces. Astérisque 250 (1998), viii+235 pp. Google Scholar
  4. 4.
    Gan, S., Wen, L.: Nonsingular star flows satisfy Axiom A and the no-cycle condition. Invent. Math. 164(2), 279–315 (2006) MathSciNetMATHCrossRefGoogle Scholar
  5. 5.
    Guckenheimer, J., Williams, R.F.: Structural stability of Lorenz attractors. Publ. Math. IHÉS 50, 59–72 (1979) MathSciNetMATHGoogle Scholar
  6. 6.
    Hayashi, S.: Connecting invariant manifolds and the solution of the C 1-stability and Ω-stability conjectures for flows. Ann. Math. 2 145(1), 81–137 (1997) MATHCrossRefGoogle Scholar
  7. 7.
    Hayashi, S.: Diffeomorphisms in F 1(M) satisfy Axiom A. Ergod. Theory Dyn. Syst. 12(2), 233–253 (1992) MATHCrossRefGoogle Scholar
  8. 8.
    Lorenz, E.N.: Deterministic nonperiodic flow. J. Atmos. Sci. 20, 130–141 (1963) CrossRefGoogle Scholar
  9. 9.
    Mañé, R.: An ergodic closing lemma. Ann. of Math. (2) 116(3), 503–540 (1982) MathSciNetMATHCrossRefGoogle Scholar
  10. 10.
    Morales, C.A., Pacifico, M.J., Pujals, E.R.: Robust transitive singular sets for 3-flows are partially hyperbolic attractors or repellers. Ann. Math. (2) 160(2), 375–432 (2004) MathSciNetMATHCrossRefGoogle Scholar
  11. 11.
    Morales, C.A., Pacifico, M.J., Pujals, E.R.: Singular hyperbolic systems. Proc. Am. Math. Soc. 127(11), 3393–3401 (1999) MathSciNetMATHCrossRefGoogle Scholar
  12. 12.
    Morales, C.A., Pacifico, M.J.: Lyapunov stability of ω-limit sets. Discrete Contin. Dyn. Syst. 8(3), 671–674 (2002) MathSciNetMATHCrossRefGoogle Scholar
  13. 13.
    Morales, C.A., Pacífico, M.J.: A spectral decomposition for singular-hyperbolic sets. Pac. J. Math. 229(1), 223–232 (2007) MATHCrossRefGoogle Scholar
  14. 14.
    Newhouse, S.: Nondensity of axiom A(a) on S 2. In: Global Analysis—Proc. Sympos. Pure Math. Berkeley, CA, 1968, vol. XIV, pp. 191–202. Amer. Math. Soc. Providence (1970) Google Scholar
  15. 15.
    Peixoto, M.: Structural stability on two dimensional manifolds. Topology 1, 101–120 (1962) MathSciNetMATHCrossRefGoogle Scholar
  16. 16.
    Peixoto, M.: On the classification of flows on 2-manifolds. In: Salvador Symp. in Dynamical Systems. Academic Press, San Diego (1973) Google Scholar
  17. 17.
    Pugh, C.: The closing lemma. Am. J. Math. 89, 956–1009 (1967) MathSciNetMATHCrossRefGoogle Scholar
  18. 18.
    Williams, R.F.: The structure of Lorenz attractors. Publ. Math. IHÉS 50, 73–99 (1979) MATHGoogle Scholar

Copyright information

© Deutsche Mathematiker-Vereinigung and Springer Verlag 2012

Authors and Affiliations

  1. 1.DijonFrance

Personalised recommendations