Skip to main content

Advertisement

Log in

GC–MS Studies of Thiophenes in the Supercritical Fluid CO2 and Solvent Extracts of Tagetes patula L.

  • Original
  • Published:
Chromatographia Aims and scope Submit manuscript

Abstract

The intact plant parts and genetically modified hairy root clone #TpA6 of Tagetes patula were extracted with supercritical fluid CO2 extraction (SFE) and a conventional solvent extraction. SFE optimization included the variation of fluid CO2 pressure, dynamic time, and the addition of methanol modifier co-solvent. The four characteristic thiophene metabolites, 5-(3-buten-1-ynyl)-2,2′-bithienyl (BBT), 2,2′:5′,2″-terthiophene (α-T), 5-(4-acetoxy-1-butynyl)-2,2′-bithienyl (BBTOAc), and 5-(3,4-diacetoxy-1-butynyl)-2,2′-bithienyl [BBT(OAc)2], were analysed by GC–MS. The proposed SFE method allowed the selective extraction of thiophenes in 60 min dynamic time with supercritical CO2 without modifier co-solvent, at 30 MPa and 40 °C. The SFE and the reference solvent extraction yielded similar results. The SFE of intact roots and flowers yielded 717 ± 31.3 and 480 ± 26.6 μg g−1 α-T, respectively, while the leaves did not contain considerable amounts of thiophenes. Remarkable amounts of BBT, BBTOAc, and BBT(OAc)2 were characteristic of the SFE of hairy root cultures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Croes AF, Jacobs JJMR, Arroo RRJ, Wullems GJ (1994) Plant Cell Tissue Organ Cult 38:159–165. doi:10.1007/BF00033873

    Article  CAS  Google Scholar 

  2. Arroo RRJ, Jacobs JJMR, de Konig EAH, de Waard M, van de Westerlo E, van Galen PM, Swolfs AEM, Klunder AJH, Croes AF, Wullems GJ (1995) Phytochemistry 38:1193–1197. doi:10.1016/0031-9422(94)00763-J

    Article  CAS  Google Scholar 

  3. Margl L, Eisenreich W, Adam P, Bacher A, Zenk MH (2001) Phytochemistry 58:875–881. doi:10.1016/S0031-9422(01)00360-0

    Article  CAS  Google Scholar 

  4. Margl L, Tei A, Gyurján I, Wink M (2002) Z Naturforch C 57:63–71

    CAS  Google Scholar 

  5. Minto RE, Blacklock BJ (2008) Prog Lipid Res 47:233–306. doi:10.1016/j.plipres.2008.02.002

    Article  CAS  Google Scholar 

  6. Hudson JB, Towers GHN (1991) Pharmacol Ther 49:181–222. doi:10.1016/0163-7258(91)90055-Q

    Article  CAS  Google Scholar 

  7. Hudson JB, Graham EA, Rossi R, Carpita A, Neri D, Towers GHN (1993) Planta Med 59:447–450. doi:10.1055/s-2006-959729

    Article  CAS  Google Scholar 

  8. Romagnoli C, Mares D, Fasulo MP, Bruni A (1994) Phytother Res 8:332–336. doi:10.1002/ptr.2650080604

    Article  CAS  Google Scholar 

  9. Mares D, Tosi B, Romagnoli C, Poli F (2002) Pharm Biol 40:400–404. doi:10.1076/phbi.40.5.400.8459

    Article  CAS  Google Scholar 

  10. Mares D, Tosi B, Poli F, Andreotti E, Romagnoli C (2004) Microbiol Res 159:295–304. doi:10.1016/j.micres.2004.06.001

    Article  CAS  Google Scholar 

  11. Buena AP, Díez-Rojo MÁ, López-Pérez JA, Robertson L, Escuer M, Bello A (2008) Crop Prot 27:96–100. doi:10.1016/j.cropro.2007.04.011

    Article  Google Scholar 

  12. Jin W, Shi Q, Hong C, Cheng Y, Ma Z, Qu H (2008) Phytomedicine 15:768–774. doi:10.1016/j.phymed.2007.10.007

    Article  CAS  Google Scholar 

  13. Downum KR, Towers GHN (1983) J Nat Prod 46:98–103. doi:10.1021/np50025a008

    Article  CAS  Google Scholar 

  14. Ketel DH (1987) J Exp Bot 38:322–330. doi:10.1093/jxb/38.2.322

    Article  CAS  Google Scholar 

  15. Sütfeld R, Towers GHN (1982) Phytochemistry 21:277–279. doi:10.1016/S0031-9422(00)95250-6

    Article  Google Scholar 

  16. Norton RA, Finlayson AJ, Towers GHN (1985) Phytochemistry 24:719–722. doi:10.1016/S0031-9422(00)84883-9

    Article  CAS  Google Scholar 

  17. Croes AF, Bosveld M, Wullems GJ (1988) Control of thiophene accumulation in Tagetes. In: Lam J, Breteler H, Arnason T, Hansen L (eds) Chemistry and biology of naturally-occurring acetylenes and related compounds (NOARC). Elsevier, Amsterdam, pp 255–265

    Google Scholar 

  18. Croes AF, van den Berg AJR, Bosveld M, Breteler H, Wullems GJ (1989) Planta 179:43–50. doi:10.1007/BF00395769

    Article  CAS  Google Scholar 

  19. Bicchi C, Frattini C, Pellegrino G, Rubiolo P, Raverdino V, Tsoupras G (1992) J Chromatogr A 609:305–313. doi:10.1016/0021-9673(92)80174-S

    Article  CAS  Google Scholar 

  20. Lang Q, Wai CM (2001) Talanta 53:771–782. doi:10.1016/S0039-9140(00)00557-9

    Article  CAS  Google Scholar 

  21. Zougagh M, Valcárcel M, Ríos A (2004) Trends Analyt Chem 23:399–405. doi:10.1016/S0165-9936(04)00524-2

    Article  CAS  Google Scholar 

  22. Herrero M, Cifuentes A, Ibañez E (2006) Food Chem 98:136–148. doi:10.1016/j.foodchem.2005.05.058

    Article  CAS  Google Scholar 

  23. Abbas KA, Mohamed A, Abdulamir AS, Abas HA (2008) J Biochem Biotech 4:345–353. doi:10.3844/ajbbsp.2008.345.353

    Article  CAS  Google Scholar 

  24. Bicchi C, Binello A, Rubiolo P (1999) Phytochem Anal 10:17–21. doi:10.1002/(SICI)1099-1565(199901/02)10:1<17:AID-PCA429>3.0.CO;2-K

    Article  CAS  Google Scholar 

  25. Ma Q, Xu X, Gao Y, Wang Q, Zhao J (2008) Int J Food Sci Technol 43:1763–1769. doi:10.1111/j.1365-2621.2007.01694.x

    Article  CAS  Google Scholar 

  26. Gao Y, Nagy B, Liu X, Simándi B, Wang Q (2009) J Supercrit Fluids 49:345–350. doi:10.1016/j.supflu.2009.02.006

    Article  CAS  Google Scholar 

  27. Naranjo-Modad S, López-Munguía A, Vilarem G, Gaset A, Bárzana E (2000) J Agric Food Chem 48:5640–5642. doi:10.1021/jf000121i

    Article  CAS  Google Scholar 

  28. Wells C, Bertsch W, Perich M (1992) Chromatographia 34:241–248. doi:10.1007/BF02268352

    Article  CAS  Google Scholar 

  29. Vasudevan P, Tandon M, Pathak N, Nuennerich P, Mueller F, Mele A, Lentz H (1997) J Sci Ind Res 56:662–672

    CAS  Google Scholar 

  30. Szarka SZ, Héthelyi É, Kuzovkina IN, Lemberkovics É, Szőke É (2008) Chromatographia 68:S63–S69. doi:10.1365/s10337-008-0668-5

    Article  CAS  Google Scholar 

  31. Murashige T, Skoog F (1962) Physiol Plant 15:473–497. doi:10.1111/j.1399-3054.1962.tb08052.x

    Article  CAS  Google Scholar 

  32. Kuzovkina IN, Mantrova OV, Al’terman IE, Yakimov SA (1996) Russ J Plant Physiol 43:291–298

    Google Scholar 

  33. Héthelyi É, Tétényi P, Kaposi P, Dános B, Kernóczi ZS, Büki GY, Koczka I (1988) Herba Hung 27:89–105

    Google Scholar 

  34. Krishna A, Mallavarapu GR, Kumar S, Ramesh S (2002) J Essent Oil Res 14:433–436

    CAS  Google Scholar 

  35. Adams RP (2001) Identification of oil components by gas chromatography/quadrupole mass spectroscopy. Allured Publ. Corp, Carol Stream, IL

    Google Scholar 

  36. Van den Dool H, Kratz PD (1963) J Chromatogr A 11:463–471. doi:10.1016/S0021-9673(01)80947-X

    Article  Google Scholar 

  37. ICH Harmonised Tripartite Guideline, Validation of Analytical Procedures: Text and Methodology Q2(R1) (2005) International conference on harmonisation of technical requirements for registration of pharmaceuticals for human use

  38. Guidance for Industry: Bioanalytical Method Validation (2001) US Department of Health and Human Services, FDA, CDER, CVM

  39. Balla J (2006) A gázkromatográfia analitikai alkalmazásai (Analytical Applications of Gas Chromatography). Edison House, Budapest

    Google Scholar 

  40. Lemberkovics É (2006) Gázkromatográfia alkalmazása (Applications of Gas Chromatography). In: Kalász H, Lengyel J (eds) A gyógyszerek szervezetbeni sorsa és vizsgáló módszerei (The fate of pharmaceutical drugs in living organisms and analytical techniques). Semmelweis Kiadó, Budapest, pp 175–198

    Google Scholar 

Download references

Acknowledgments

This work was supported by OMFB-00077/2006 (grant number: RUS-19/04).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Szabolcs Szarka.

Additional information

I. Gyurján: Deceased.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Szarka, S., Gyurján, I., László, M. et al. GC–MS Studies of Thiophenes in the Supercritical Fluid CO2 and Solvent Extracts of Tagetes patula L.. Chroma 71, 1039–1047 (2010). https://doi.org/10.1365/s10337-010-1591-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1365/s10337-010-1591-0

Keywords

Navigation