Chromatographia

, Volume 71, Issue 11–12, pp 1039–1047 | Cite as

GC–MS Studies of Thiophenes in the Supercritical Fluid CO2 and Solvent Extracts of Tagetes patula L.

  • Szabolcs Szarka
  • István Gyurján
  • Miklós László
  • Éva Héthelyi
  • Inna N. Kuzovkina
  • Éva Lemberkovics
  • Éva Szőke
Original

Abstract

The intact plant parts and genetically modified hairy root clone #TpA6 of Tagetes patula were extracted with supercritical fluid CO2 extraction (SFE) and a conventional solvent extraction. SFE optimization included the variation of fluid CO2 pressure, dynamic time, and the addition of methanol modifier co-solvent. The four characteristic thiophene metabolites, 5-(3-buten-1-ynyl)-2,2′-bithienyl (BBT), 2,2′:5′,2″-terthiophene (α-T), 5-(4-acetoxy-1-butynyl)-2,2′-bithienyl (BBTOAc), and 5-(3,4-diacetoxy-1-butynyl)-2,2′-bithienyl [BBT(OAc)2], were analysed by GC–MS. The proposed SFE method allowed the selective extraction of thiophenes in 60 min dynamic time with supercritical CO2 without modifier co-solvent, at 30 MPa and 40 °C. The SFE and the reference solvent extraction yielded similar results. The SFE of intact roots and flowers yielded 717 ± 31.3 and 480 ± 26.6 μg g−1 α-T, respectively, while the leaves did not contain considerable amounts of thiophenes. Remarkable amounts of BBT, BBTOAc, and BBT(OAc)2 were characteristic of the SFE of hairy root cultures.

Keywords

Gas chromatography–mass spectrometry Supercritical fluid CO2 extraction Acetylenic thiophenes Hairy root culture Tagetes patula L. 

Notes

Acknowledgments

This work was supported by OMFB-00077/2006 (grant number: RUS-19/04).

References

  1. 1.
    Croes AF, Jacobs JJMR, Arroo RRJ, Wullems GJ (1994) Plant Cell Tissue Organ Cult 38:159–165. doi: 10.1007/BF00033873 CrossRefGoogle Scholar
  2. 2.
    Arroo RRJ, Jacobs JJMR, de Konig EAH, de Waard M, van de Westerlo E, van Galen PM, Swolfs AEM, Klunder AJH, Croes AF, Wullems GJ (1995) Phytochemistry 38:1193–1197. doi: 10.1016/0031-9422(94)00763-J CrossRefGoogle Scholar
  3. 3.
    Margl L, Eisenreich W, Adam P, Bacher A, Zenk MH (2001) Phytochemistry 58:875–881. doi: 10.1016/S0031-9422(01)00360-0 CrossRefGoogle Scholar
  4. 4.
    Margl L, Tei A, Gyurján I, Wink M (2002) Z Naturforch C 57:63–71Google Scholar
  5. 5.
    Minto RE, Blacklock BJ (2008) Prog Lipid Res 47:233–306. doi: 10.1016/j.plipres.2008.02.002 CrossRefGoogle Scholar
  6. 6.
    Hudson JB, Towers GHN (1991) Pharmacol Ther 49:181–222. doi: 10.1016/0163-7258(91)90055-Q CrossRefGoogle Scholar
  7. 7.
    Hudson JB, Graham EA, Rossi R, Carpita A, Neri D, Towers GHN (1993) Planta Med 59:447–450. doi: 10.1055/s-2006-959729 CrossRefGoogle Scholar
  8. 8.
    Romagnoli C, Mares D, Fasulo MP, Bruni A (1994) Phytother Res 8:332–336. doi: 10.1002/ptr.2650080604 CrossRefGoogle Scholar
  9. 9.
    Mares D, Tosi B, Romagnoli C, Poli F (2002) Pharm Biol 40:400–404. doi: 10.1076/phbi.40.5.400.8459 CrossRefGoogle Scholar
  10. 10.
    Mares D, Tosi B, Poli F, Andreotti E, Romagnoli C (2004) Microbiol Res 159:295–304. doi: 10.1016/j.micres.2004.06.001 CrossRefGoogle Scholar
  11. 11.
    Buena AP, Díez-Rojo MÁ, López-Pérez JA, Robertson L, Escuer M, Bello A (2008) Crop Prot 27:96–100. doi: 10.1016/j.cropro.2007.04.011 CrossRefGoogle Scholar
  12. 12.
    Jin W, Shi Q, Hong C, Cheng Y, Ma Z, Qu H (2008) Phytomedicine 15:768–774. doi: 10.1016/j.phymed.2007.10.007 CrossRefGoogle Scholar
  13. 13.
    Downum KR, Towers GHN (1983) J Nat Prod 46:98–103. doi: 10.1021/np50025a008 CrossRefGoogle Scholar
  14. 14.
    Ketel DH (1987) J Exp Bot 38:322–330. doi: 10.1093/jxb/38.2.322 CrossRefGoogle Scholar
  15. 15.
    Sütfeld R, Towers GHN (1982) Phytochemistry 21:277–279. doi: 10.1016/S0031-9422(00)95250-6 CrossRefGoogle Scholar
  16. 16.
    Norton RA, Finlayson AJ, Towers GHN (1985) Phytochemistry 24:719–722. doi: 10.1016/S0031-9422(00)84883-9 CrossRefGoogle Scholar
  17. 17.
    Croes AF, Bosveld M, Wullems GJ (1988) Control of thiophene accumulation in Tagetes. In: Lam J, Breteler H, Arnason T, Hansen L (eds) Chemistry and biology of naturally-occurring acetylenes and related compounds (NOARC). Elsevier, Amsterdam, pp 255–265Google Scholar
  18. 18.
    Croes AF, van den Berg AJR, Bosveld M, Breteler H, Wullems GJ (1989) Planta 179:43–50. doi: 10.1007/BF00395769 CrossRefGoogle Scholar
  19. 19.
    Bicchi C, Frattini C, Pellegrino G, Rubiolo P, Raverdino V, Tsoupras G (1992) J Chromatogr A 609:305–313. doi: 10.1016/0021-9673(92)80174-S CrossRefGoogle Scholar
  20. 20.
    Lang Q, Wai CM (2001) Talanta 53:771–782. doi: 10.1016/S0039-9140(00)00557-9 CrossRefGoogle Scholar
  21. 21.
    Zougagh M, Valcárcel M, Ríos A (2004) Trends Analyt Chem 23:399–405. doi: 10.1016/S0165-9936(04)00524-2 CrossRefGoogle Scholar
  22. 22.
    Herrero M, Cifuentes A, Ibañez E (2006) Food Chem 98:136–148. doi: 10.1016/j.foodchem.2005.05.058 CrossRefGoogle Scholar
  23. 23.
    Abbas KA, Mohamed A, Abdulamir AS, Abas HA (2008) J Biochem Biotech 4:345–353. doi: 10.3844/ajbbsp.2008.345.353 CrossRefGoogle Scholar
  24. 24.
    Bicchi C, Binello A, Rubiolo P (1999) Phytochem Anal 10:17–21. doi: 10.1002/(SICI)1099-1565(199901/02)10:1<17:AID-PCA429>3.0.CO;2-K CrossRefGoogle Scholar
  25. 25.
    Ma Q, Xu X, Gao Y, Wang Q, Zhao J (2008) Int J Food Sci Technol 43:1763–1769. doi: 10.1111/j.1365-2621.2007.01694.x CrossRefGoogle Scholar
  26. 26.
    Gao Y, Nagy B, Liu X, Simándi B, Wang Q (2009) J Supercrit Fluids 49:345–350. doi: 10.1016/j.supflu.2009.02.006 CrossRefGoogle Scholar
  27. 27.
    Naranjo-Modad S, López-Munguía A, Vilarem G, Gaset A, Bárzana E (2000) J Agric Food Chem 48:5640–5642. doi: 10.1021/jf000121i CrossRefGoogle Scholar
  28. 28.
    Wells C, Bertsch W, Perich M (1992) Chromatographia 34:241–248. doi: 10.1007/BF02268352 CrossRefGoogle Scholar
  29. 29.
    Vasudevan P, Tandon M, Pathak N, Nuennerich P, Mueller F, Mele A, Lentz H (1997) J Sci Ind Res 56:662–672Google Scholar
  30. 30.
    Szarka SZ, Héthelyi É, Kuzovkina IN, Lemberkovics É, Szőke É (2008) Chromatographia 68:S63–S69. doi: 10.1365/s10337-008-0668-5 CrossRefGoogle Scholar
  31. 31.
    Murashige T, Skoog F (1962) Physiol Plant 15:473–497. doi: 10.1111/j.1399-3054.1962.tb08052.x CrossRefGoogle Scholar
  32. 32.
    Kuzovkina IN, Mantrova OV, Al’terman IE, Yakimov SA (1996) Russ J Plant Physiol 43:291–298Google Scholar
  33. 33.
    Héthelyi É, Tétényi P, Kaposi P, Dános B, Kernóczi ZS, Büki GY, Koczka I (1988) Herba Hung 27:89–105Google Scholar
  34. 34.
    Krishna A, Mallavarapu GR, Kumar S, Ramesh S (2002) J Essent Oil Res 14:433–436Google Scholar
  35. 35.
    Adams RP (2001) Identification of oil components by gas chromatography/quadrupole mass spectroscopy. Allured Publ. Corp, Carol Stream, ILGoogle Scholar
  36. 36.
    Van den Dool H, Kratz PD (1963) J Chromatogr A 11:463–471. doi: 10.1016/S0021-9673(01)80947-X CrossRefGoogle Scholar
  37. 37.
    ICH Harmonised Tripartite Guideline, Validation of Analytical Procedures: Text and Methodology Q2(R1) (2005) International conference on harmonisation of technical requirements for registration of pharmaceuticals for human useGoogle Scholar
  38. 38.
    Guidance for Industry: Bioanalytical Method Validation (2001) US Department of Health and Human Services, FDA, CDER, CVMGoogle Scholar
  39. 39.
    Balla J (2006) A gázkromatográfia analitikai alkalmazásai (Analytical Applications of Gas Chromatography). Edison House, BudapestGoogle Scholar
  40. 40.
    Lemberkovics É (2006) Gázkromatográfia alkalmazása (Applications of Gas Chromatography). In: Kalász H, Lengyel J (eds) A gyógyszerek szervezetbeni sorsa és vizsgáló módszerei (The fate of pharmaceutical drugs in living organisms and analytical techniques). Semmelweis Kiadó, Budapest, pp 175–198Google Scholar

Copyright information

© Vieweg+Teubner Verlag | Springer Fachmedien Wiesbaden GmbH 2010

Authors and Affiliations

  • Szabolcs Szarka
    • 1
  • István Gyurján
    • 2
  • Miklós László
    • 2
  • Éva Héthelyi
    • 1
  • Inna N. Kuzovkina
    • 3
  • Éva Lemberkovics
    • 1
  • Éva Szőke
    • 1
  1. 1.Department of PharmacognosySemmelweis UniversityBudapestHungary
  2. 2.Department of Plant Anatomy, Institute of BiologyEötvös Loránd UniversityBudapestHungary
  3. 3.Timiryazev Institute of Plant PhysiologyRussian Academy of SciencesMoscowRussia

Personalised recommendations