, Volume 71, Issue 3–4, pp 185–193 | Cite as

Factors Affecting the Interpretation of Selectivity on Synergi Reversed-Phase Columns



The solvation parameter model is used to establish the contribution of cohesion, dipole-type, and hydrogen-bonding interactions to the retention mechanism on Synergi Hydro-RP, Fusion-RP, and Polar-RP reversed-phase columns with methanol–water mobile phases containing from 10–70% (v/v) methanol. Large changes in relative retention on the compared columns can result from steric resistance, differences in the phase ratios, and from dewetting at low methanol compositions while changes in intermolecular interactions are responsible for smaller changes at a fixed mobile phase composition. For Synergi Hydro-RP and Polar-RP changing methanol for acetonirile is more powerful for affecting changes in retention order than changing the stationary phase. The three Synergi columns show useful selectivity differences for method development when compared with 13 other modern reversed-phase columns representing a selection of different stationary phase chemistries. The results from this study indicate the limitations of classifying reversed-phase columns by the retention of prototypical compounds to define specific retention mechanisms.


Column liquid chromatography Solvation parameter model Synergi Hydro-RP, Fusion-RP and Polar-RP Steric resistance 


  1. 1.
    Poole CF (2003) The essence of chromatography. Elsevier, AmsterdamGoogle Scholar
  2. 2.
    Claessens HA (2001) Trends Anal Chem 20:563–583CrossRefGoogle Scholar
  3. 3.
    Stella C, Rudaz S, Veuthey J-L, Tchapla A (2001) Chromatographia 53:S-132–S-140Google Scholar
  4. 4.
    Rohrschneider L (2001) J Sep Sci 24:3–9CrossRefGoogle Scholar
  5. 5.
    Rohrschneider L (1998) Chromatographia 48:728–738CrossRefGoogle Scholar
  6. 6.
    Rohrschneider L (1999) J High Resolut Chromatogr 22:454–458CrossRefGoogle Scholar
  7. 7.
    Neue UD (2007) J Sep Sci 30:1611–1627CrossRefGoogle Scholar
  8. 8.
    Dragovic S, Haghedooren E, Nemeth MI, Palabiyik, Hoogmartens J, Adams E (2009) J Chromatogr A 1216:3210–3216CrossRefGoogle Scholar
  9. 9.
    Euerby M, Petersson P (2003) J Chromatogr A 994:13–36CrossRefGoogle Scholar
  10. 10.
    Euerby MR, Petersson P (2005) J Chromatogr A 1088:1–15CrossRefGoogle Scholar
  11. 11.
    Euerby MR, Petersson P, Campbell W, Roe W (2007) J Chromatogr A 1154:138–151CrossRefGoogle Scholar
  12. 12.
    Le Mapihan K, Vial J, Jardy A (2007) J Chromatogr A 1144:183–196CrossRefGoogle Scholar
  13. 13.
    Jandera P, Novotna K, Beldean-Galea MS, Jisa K (2006) J Sep Sci 29:856–871CrossRefGoogle Scholar
  14. 14.
    Vervoort RJM, Ruyter E, Debets AJJ, Claessens HA, Cramers CA, de Jong GJ (2001) J Chromatogr A 931:67–79CrossRefGoogle Scholar
  15. 15.
    Kersten BR, Poole CF, Furton KG (1987) J Chromatogr 411:61–79CrossRefGoogle Scholar
  16. 16.
    Poole CF, Kollie TO, Poole SK (1992) Chromatographia 34:281–302CrossRefGoogle Scholar
  17. 17.
    Abraham MH, Poole CF, Poole SK (1999) J Chromatogr A 842:79–114CrossRefGoogle Scholar
  18. 18.
    Poole CF, Poole SK (2008) J Chromatogr A 1184:254–280CrossRefGoogle Scholar
  19. 19.
    Snyder LR, Dolan JW, Carr PW (2004) J Chromatogr A 1060:77–116Google Scholar
  20. 20.
    Croes K, Steffens A, Marchand DH, Snyder LR (2005) J Chromatogr A 1098:123–130CrossRefGoogle Scholar
  21. 21.
    Marchand DH, Snyder LR, Dolan JW (2008) J Chromatogr A 1191:2–20CrossRefGoogle Scholar
  22. 22.
    Vonk EC, Lewandowska K, Claessens HA, Kaliszan R, Cramers CA (2003) J Sep Sci 26:777–792CrossRefGoogle Scholar
  23. 23.
    Kaliszan R (2007) Chem Rev 107:3212–3246CrossRefGoogle Scholar
  24. 24.
    Heberger K (2007) J Chromatogr A 1158:273–305CrossRefGoogle Scholar
  25. 25.
    Szepesy L (2003) J Sep Sci 26:201–214CrossRefGoogle Scholar
  26. 26.
    Vitha M, Carr PW (2006) J Chromatogr A 1126:143–194CrossRefGoogle Scholar
  27. 27.
    Poole CF, Poole SK (2002) J Chromatogr A 965:263–299CrossRefGoogle Scholar
  28. 28.
    Abraham MH, Ibrahim A, Zissimos AM (2004) J Chromatogr A 1037:29–47CrossRefGoogle Scholar
  29. 29.
    Poole CF, Atapattu SN, Poole SK, Bell AK (2009) Anal Chim Acta 652:32–53CrossRefGoogle Scholar
  30. 30.
    Poole CF, Poole SK (2009) J Chromatogr A 1216:1530–1550CrossRefGoogle Scholar
  31. 31.
    Poole CF, Ahmed H, Kiridena W, DeKay C, Koziol WW (2005) Chromatographia 62:553–561CrossRefGoogle Scholar
  32. 32.
    Poole CF, Kiridena W, DeKay C, Koziol WW, Rosencrans RD (2006) J Chromatogr A 1115:133–141CrossRefGoogle Scholar
  33. 33.
    Poole CF, Ahmed H, Kiridena W, DeKay C, Koziol WW (2007) Chromatographia 65:127–139CrossRefGoogle Scholar
  34. 34.
    Kiridena W, Poole CF, Atapattu SN, Qian J, Koziol WW (2007) Chromatographia 66:453–459CrossRefGoogle Scholar
  35. 35.
    Kiridena W, DeKay C, Koziol WW, Ali Z, Ahmed H, Poole CF (2006) Chromatographia 63:407–417CrossRefGoogle Scholar
  36. 36.
    Walter TH, Iraneta P, Capparella M (2005) J Chromatogr A 1075:177–183CrossRefGoogle Scholar
  37. 37.
    Kiridena W, Atapattu SN, Poole CF, Koziol WW (2008) Chromatographia 68:11–17CrossRefGoogle Scholar
  38. 38.
    Abraham MH, Roses M, Poole CF, Poole SK (1997) J Phys Org Chem 10:358–368CrossRefGoogle Scholar
  39. 39.
    Kiridena W, Atapattu SN, Poole CF, Koziol WW (2008) Chromatographia 68:491–500CrossRefGoogle Scholar
  40. 40.
    Chu Y, Poole CF (2003) J Chromatogr A 1003:113–121CrossRefGoogle Scholar

Copyright information

© Vieweg+Teubner | GWV Fachverlage GmbH 2009

Authors and Affiliations

  1. 1.Department of ChemistryWayne State UniversityDetroitUSA

Personalised recommendations