Chromatographia

, 70:1305 | Cite as

A Review of Microdialysis Sampling Systems

Review

Abstract

The most important aspects of microdialysis are a theoretical understanding of the process, the microdialysis membrane and the design of the microdialysis probe including the inner cannula dimensions. Several efforts have been made to theoretically account for the processes that take place during microdialysis. These have been employed to develop optimal sampling conditions so as to increase the applicability of the technique for in situ sampling and as a sample clean-up technique prior to chromatography. On the occasion of Prof. Lo Gorton’s 60th birthday, this review highlights the challenge presented by low analyte recoveries that is the major bottleneck in the wider use of microdialysis. The discussion concludes by considering how to increase analyte recovery through a multiple probe approach or by an increase in recovery in the light of the advantages of nanotechnology. Both approaches could impact on the use of microdialysis as a sampling and sample clean-up technique for liquid chromatography.

Keywords

Microdialysis sampling system Inner cannula dimensions Review 

Notes

Acknowledgments

I am grateful to the reviewers’ contribution.

References

  1. 1.
    Marko-Varga G, Buttler T, Gorton L, Gronsternwall C (1993) Chromatographia 35:285–289CrossRefGoogle Scholar
  2. 2.
    Torto N, Laurell T, Gorton L, Marko-Varga G (1999) Trends Anal Chem 18:281–305CrossRefGoogle Scholar
  3. 3.
    Torto N, Laurell T, Gorton L, Marko-Varga G (1998) Anal Chim Acta 374:111–135CrossRefGoogle Scholar
  4. 4.
    Bungay PM, Morrison PF, Dedrick RL (1990) Life Sci 46:105–119CrossRefGoogle Scholar
  5. 5.
    Hsiao JK, Ball BA, Morrison PF, Mefford NI, Bungay PM (1990) J Neurochem 54:1449–1452CrossRefGoogle Scholar
  6. 6.
    Torto N, Bång J, Richardson S, Nilsson GS, Gorton L, Laurell T, Marko-Varga G (1998) J Chromatogr A 806:265–278CrossRefGoogle Scholar
  7. 7.
    Wisniewski N, Torto N (2002) Analyst 127:1129–1134CrossRefGoogle Scholar
  8. 8.
    Tao R, Hjorth S (1992) J Neurochem 59:1778–1785CrossRefGoogle Scholar
  9. 9.
    Buttler T, Nilsson C, Gorton L, Marko-Varga G, Laurell T (1996) J Chromatogr A 725:41–56CrossRefGoogle Scholar
  10. 10.
    Kendrick KM (1990) J Neurosci Methods 34:35–46CrossRefGoogle Scholar
  11. 11.
    Ao X, Sellati TJ, Stenken JA (2004) Anal Chem 76:3777–3784CrossRefGoogle Scholar
  12. 12.
    Duo J, Fletcher H, Stenken JA (2006) Biosens Bioelectron 22:449–457CrossRefGoogle Scholar
  13. 13.
    Torto N, Mogopodi D (2004) Trends Anal Chem 23:87–170CrossRefGoogle Scholar
  14. 14.
    Mogopodi D, Torto N (2003) Anal Chim Acta 482:91–97CrossRefGoogle Scholar
  15. 15.
    Cheng G-W, Lee C-F, Hsu K-C, Wu H-L, Huang Y-L (2008) J Chromatogr A 1201:202–207CrossRefGoogle Scholar
  16. 16.
    Peyrou PS, Moser I, Jobst G (2003) Biosens Bioelectron 18:613–619CrossRefGoogle Scholar
  17. 17.
    Hsieh Y-C, Zahn JD (2007) Biosens Bioelectron 22:2422–2428CrossRefGoogle Scholar
  18. 18.
    Mogheli R, Puggioni G, Dedola S, Rochitta G, Calia G, Bazzu G, Esposito G, Lowry JP, O’Neill RD, Desole MS, Miele E, Serra PA (2008) Anal Biochem 380:323–330CrossRefGoogle Scholar
  19. 19.
    Woo KL, Lunte CE (2008) J Pharm Sci 48:20–26Google Scholar
  20. 20.
    Chen C-F, Drew KL (2008) J Chromatogr A 1209:29–36CrossRefGoogle Scholar

Copyright information

© Vieweg+Teubner | GWV Fachverlage GmbH 2009

Authors and Affiliations

  1. 1.Department of ChemistryRhodes UniversityGrahamstownSouth Africa

Personalised recommendations