Skip to main content
Log in

A Review of Synthetic Polymer Characterization by Pyrolysis–GC–MS

  • Review
  • Published:
Chromatographia Aims and scope Submit manuscript

Abstract

Pyrolysis–GC with mass spectrometry detection (Py–GC–MSD) study of the thermal degradation products of synthetic polymers is reviewed. Due to the high heating speed, accurate temperature reproducibility and a wide temperature range, Py–GC–MSD has been applied successfully for polymer characterization. Introduction of samples using the pyrolysis carrier gas through the split injection port, followed by sub-ambient cryofocusing of the pyrolysis products, has shown to give reproducible chromatograms (pyrograms). One of the advantages of this method is that all compositions of the polymers and additives can be investigated without any pretreatment, providing important compositional and structural information in a simple way. The method is a convenient method for compositional analysis of complex polymer materials. The aim of this review is to describe the kinds of applications for which Py–GC–MSD has been found to be suitable; to present guidelines for method optimization; to survey innovations that have recently been developed or are currently being researched; to point to problems in our understanding of the pyrograms; and to suggest areas in which research efforts might be most effective in realizing the full potential of this technique.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

ABS:

Acrylonitrile–butadiene–styrene

amu:

Atomic mass units

ANN:

Artificial neural networks

DA:

Discriminant analysis

ECF:

Elementary chlorine free

FTIR:

Fourier transform infrared spectrophotometry

GC:

Gas chromatography

HMDS:

Hexamethyldisilazane

LPy:

Laser pyrolysis

ma:

Methylacrylate

MALDI:

Matrix-assisted laser desorption ionization

MALDI–TOF-MS:

Matrix assisted laser desorption/ionization–time of flight-mass spectrometry

Mn:

Number-average molecular weight

MSD:

Mass spectrometry detection

Mw:

Weight-average molecular weight

NMR:

Nuclear magnetic resonance

PC:

Polycarbonates

PCA:

Principal component analysis

PEG:

Poly(ethylene glycol)

PLS:

Principal least squares

PM:

Particulate matter

PMMA:

Poly(methyl methacrylate)

POM:

Polyoxymethylene

PTh:

Polythiophene

Py:

Pyrolysis

PVC:

Polyvinyl chloride

SEC:

Size exclusion chromatography

st:

Styrene

TBBA:

Tetrabromobisphenol A

TCF:

Total chlorine free

THM:

Thermally-assisted hydrolysis and methylation

TIC :

Total ion chromatogram

TMAH:

Tetramethylammonium hydroxide

TMS:

Trimethylsilyl

TOF:

Time of flight

VOCs:

Volatile organic compounds

References

  1. Davison WHT, Slaney S, Wragg AL (1954) Chem Ind 1356

  2. Strassburger J, Brauer GM, Tryon M, Forziati AF (1960) Anal Chem 32:454

    Article  CAS  Google Scholar 

  3. Haken JK (1999) Prog Org Coat 36:1

    Article  CAS  Google Scholar 

  4. Peacock PM, McEwen CN (2006) Anal Chem 78:3957

    Article  CAS  Google Scholar 

  5. Wang FCY, Burleson AD (1999) J Chromatogr A 833:111

    Article  CAS  Google Scholar 

  6. Stanley CW, Peterson WR (1962) SPE Trans 2:298

    CAS  Google Scholar 

  7. Wanless GC (1962) J Polym Sci 62:263

    Article  CAS  Google Scholar 

  8. Gozet T, Hacaloglu J, Oenal AM (2004) J Macromol Sci Pure Appl Chem A 41:713

    Article  Google Scholar 

  9. Gozet T, Hacaloglu J (2004) Polym Int 53:2162

    Article  CAS  Google Scholar 

  10. Gozet T, Hacaloglu J (2005) J Anal Appl Pyrol 73:257

    Article  CAS  Google Scholar 

  11. Odermatt J, Ringena O, Teucke R, Reiter C, Gerst M (2005) Appita J 58:462

    CAS  Google Scholar 

  12. Achar BN, Lokesh KS, Fohlen GM, Mohan Kumar TM (2005) React Funct Polym 63:63

    Article  CAS  Google Scholar 

  13. Sundarrajan S, Surianarayanan M, Srinivasan KSV (2005) J Polym Sci A: Polym Chem 43:638

    Article  CAS  Google Scholar 

  14. Coulier L, Kaal ER, Tienstra M, Hankemeier T (2005) J Chromatogr A 1062:227

    Article  CAS  Google Scholar 

  15. Challinor JM (1989) J Anal Appl Pyrol 16:323

    Article  CAS  Google Scholar 

  16. Ohtani H, Tsuge S, Usami T (1984) Macromolecules 17:2557

    Article  CAS  Google Scholar 

  17. Jones CER (2007) In: Wilson ID (ed) Encyclopedia of separation science. Elsevier, Amsterdam, pp 544–550

  18. Haken JK (2007) In: Wilson ID (ed) Encyclopedia of separation science. Elsevier, Amsterdam, pp 4334–4343

  19. Puype F, Samsonek J (2009) Chem Listy 103:s126

    Google Scholar 

  20. Metz LA, Meruva NK, Morgan SL, Goode SR (2004) J Anal Appl Pyrol 71:327

    Google Scholar 

  21. Nordmark U (2000) J Anal Appl Pyrol 55:93

    Article  CAS  Google Scholar 

  22. Wang FCY (1997) Anal Chem News Feat 69:667A

    Google Scholar 

  23. Matheson MJ, Wampler TP, Johnson L, Atherly L, Smucker L (1997) Am Lab 29:24c

    CAS  Google Scholar 

  24. Evans SJ, Haines PJ, Skinner GA (2000) J Anal Appl Pyrol 55:13

    Article  CAS  Google Scholar 

  25. Yaylayan VA (1999) Am Lab 30

  26. Kim SW, Lee GH, Heo GS (1999) Rubber Chem Tech 72:181

    Google Scholar 

  27. Esperanza MM, García AN, Font R, Conesa JA (1999) J Anal Appl Pyrol 52:151

    Article  CAS  Google Scholar 

  28. Riess M, Thoma H, Vierle O, van Eldik R (2000) J Anal Appl Pyrol 53:135

    Article  CAS  Google Scholar 

  29. Galipo RC, Egan WJ, Aust JF, Myrick ML, Morgan SL (1998) J Anal Appl Pyrol 45:23

    Article  CAS  Google Scholar 

  30. Mao S, Ohtani H, Tsuge S (1995) J Anal Appl Pyrol 33:181

    Article  CAS  Google Scholar 

  31. Choi SS (1999) J Anal Appl Pyrol 52:105

    Article  CAS  Google Scholar 

  32. Day M, Cooney JD, Touchette-Barrette C, Sheehan SE (1999) J Anal Appl Pyrol 52:199

    Article  CAS  Google Scholar 

  33. Ghebremeskel GN, Sekinger JK, Hoffpauir JL, Hendrix C (1996) Rubber Chem Tech 69:874

    CAS  Google Scholar 

  34. Lytle CA, Bertsch W, McKinley M (1998) J Anal Appl Pyrol 45:121

    Article  CAS  Google Scholar 

  35. Zaikin VG, Mardanov RG, Kleiner VI, Krentsel BA, Bobrov BN (1993) J Anal Appl Pyrol 26:185

    Article  CAS  Google Scholar 

  36. Due S, Petit A (1997) J Anal Appl Pyrol 40–41:55

    Google Scholar 

  37. Blazsó M (1994) J Chromatogr A 683:115

    Article  Google Scholar 

  38. Wang FCY, Huang YB (1999) J High Resol Chromatogr 22:11

    Article  CAS  Google Scholar 

  39. Wang FCY (1999) Anal Chem 71:4776

    Article  CAS  Google Scholar 

  40. Ishida Y, Kawaguchi S, Ito Y, Tsuge S, Ohtani HJ (1997) Anal Appl Pyrol 40–41:321

    Article  Google Scholar 

  41. Ohtani H, Takehana Y, Tsuge S (1997) Macromolecules 30:2542

    Article  CAS  Google Scholar 

  42. Ohtani H, Luo YF, Nakashima Y, Tsukahara Y, Tsuge S (1994) Anal Chem 66:1438

    Article  CAS  Google Scholar 

  43. Lattimer RP (2000) J Anal Appl Pyrol 56:61

    Article  CAS  Google Scholar 

  44. Haken JK, Iddamalgoda PI (1995) Prog Org Coat 26:101

    Article  CAS  Google Scholar 

  45. Blazsó M (1999) J Anal Appl Pyrol 51:73

    Article  Google Scholar 

  46. Venema A, Boom-van Geest RCA (1995) J Microcolumn Sep 7:337

    Article  CAS  Google Scholar 

  47. González-Vila FJ, Amblès A, del Río JC, Grasset L (2001) J Anal Appl Pyrol 58–59:315

    Article  Google Scholar 

  48. Asperger A, Engewald W, Fabian G (1999) J Anal Appl Pyrol 52:51

    Article  CAS  Google Scholar 

  49. Wang FCY, Gerhart BB, Smith CG (1995) Anal Chem 67:3681

    Article  CAS  Google Scholar 

  50. Wang FCY, Gerhart BB (1996) Anal Chem 68:3917

    Article  CAS  Google Scholar 

  51. Zhang T, Cai Q, Wu D-Z, Jin R-G (2005) J Appl Polym Sci 95:880

    Article  CAS  Google Scholar 

  52. Bate DM, Lehrle RS (1999) Polym Degradation Stab 64:75

    Article  CAS  Google Scholar 

  53. Fabbri D, Prati S, Vassura I (2002) J Environ Monit 4:210

    Article  CAS  Google Scholar 

  54. del Río JC, Gutiérrez A, González-Villa FJ, Martín F (1999) J Anal Appl Pyrol 49:165

    Article  Google Scholar 

  55. Scalarone D, Lazzari M, Chiantore O (2002) J Anal Appl Pyrol 64:345

    Article  CAS  Google Scholar 

  56. Chiavari G, Ioele M, Prati S, Santopadre P (2002) Chromatographia 56:763

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We acknowledge the Isidro Parga Pondal grants awarded to R. Rial-Otero and J.-L. Capelo by the Xunta de Galicia (Autonomic Community Government in NW Spain, Santiago de Compostela, Galicia, Spain).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jesús Simal-Gándara.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rial-Otero, R., Galesio, M., Capelo, JL. et al. A Review of Synthetic Polymer Characterization by Pyrolysis–GC–MS. Chroma 70, 339–348 (2009). https://doi.org/10.1365/s10337-009-1254-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1365/s10337-009-1254-1

Keywords

Navigation