Advertisement

Chromatographia

, Volume 70, Issue 3–4, pp 609–611 | Cite as

Determination of Toosendanin Extracted from Traditional Chinese Medicine: the Fruit of Melia azedarach LC–FD Detection

  • Xia Meng
  • Jingdong Peng
  • Yanqing Chen
Full Short Communication

Abstract

A rapid and selective reversed-phase liquid chromatography with fluorescence detection was developed and validated for the determination of toosendanin in the fruit of Melia azedarach. After extraction, the extracts were analysed at 25 °C using Eclipse XDB-C18 column (4.6 mm × 150 mm; 5 μm) and a mobile phase consisting of methanol–water at a flow rate of 1.0 mL min−1. Detection wavelength was set at λEx = 230 nm, λEm = 320 nm. The linearity, accuracy, and precision of the method were good, and the method can be successfully used to investigate the level of toosendanin component in herb samples with satisfactory results.

Keywords

Column liquid chromatography Toosendanin Melia azedarach 

Notes

Acknowledgments

The authors gratefully acknowledge the support by the project of the Chongqing Municipal Key Laboratory on Luminescence and Real-Time Analysis, Southwest University, China (CSTC, 2006CA8006).

References

  1. 1.
    Zhong CC, Hsie TH, Chen SF, Liang HT (1975) Acta Chimi Sin 33:35–47Google Scholar
  2. 2.
    Shu GX, Liang XT (1980) Acta Chimi Sin 38:196–198Google Scholar
  3. 3.
    Shi YL, Li MF (2007) Prog Neurobiol 82:1–10. doi: 10.1016/j.pneurobio.2007.02.002 CrossRefGoogle Scholar
  4. 4.
    Li MF, Shi YL (2005) Toxicon 45:53–60. doi: 10.1016/j.toxicon.2004.09.010 CrossRefGoogle Scholar
  5. 5.
    Shi YL, Chen WY (1999) Brain Res 850:173–178. doi: 10.1016/S0006-8993(99)02129-0 CrossRefGoogle Scholar
  6. 6.
    Wang ZF, Shi YL (2001) Neuroscience 104:41–47. doi: 10.1016/S0306-4522(01)00051-3 CrossRefGoogle Scholar
  7. 7.
    Zhou JY, Wang ZF, Ren XM, Tang MZ, Shi YL (2003) FEBS Lett 555:375–379. doi: 10.1016/S0014-5793(03)01291-2 CrossRefGoogle Scholar
  8. 8.
    Zhao WQ, Feng H, Bennett P, Ng KT (1997) Neurobiol Learn Mem 67:207–213. doi: 10.1006/nlme.1997.3767 CrossRefGoogle Scholar
  9. 9.
    Xie YS, Fields PG, Isman MB, Chen WK, Zhang X (1995) J Stored Prod Res 31:259–265. doi: 10.1016/0022-474X(95)00003-P CrossRefGoogle Scholar
  10. 10.
    Li MF, Shi YL (2004) Eur J Pharmacol 501:71–78. doi: 10.1016/j.ejphar.2004.08.027 CrossRefGoogle Scholar
  11. 11.
    Li MF, Wu Y, Wang ZF, Shi YL (2004) Neurosci Res 49:197–203. doi: 10.1016/j.neures.2004.02.012 CrossRefGoogle Scholar
  12. 12.
    Wu AA, Zhang X, Pan Y (2003) Chin Arch Tradit Chin Med 21:159–160Google Scholar
  13. 13.
    Tang Y, Liu SM, Hu DB (2005) Chem Res Appl 17:276–278Google Scholar
  14. 14.
    Jiang P, An XN (2005) Chem Ind For Prod 25:79–82Google Scholar
  15. 15.
    Sun XJ, Lu XW, Cui P (2007) Appl Chem Ind 36:561–563Google Scholar
  16. 16.
    Ong ES, Ong CN (2007) Rapid Commun Mass Spectrom 21:589–598. doi: 10.1002/rcm.2878 CrossRefGoogle Scholar
  17. 17.
    Jiang P, Ye HL, An XN (2004) Chem Ind For Prod 24:23–27Google Scholar
  18. 18.
    Zhang J, Feng G, Luo L, Yu XY, Ma ZQ, Feng JT, Liu XJ, Zhang X (2008) Anal Chim Acta 622:182–188. doi: 10.1016/j.aca.2008.05.046 CrossRefGoogle Scholar

Copyright information

© Vieweg+Teubner | GWV Fachverlage GmbH 2009

Authors and Affiliations

  1. 1.Key Laboratory on Luminescence and Real-Time Analysis, Southwest University, Ministry of EducationChongqingPeople’s Republic of China

Personalised recommendations