Skip to main content
Log in

Application of High Temperature LC to the Separation of AZD5438 (4-(1-Isopropyl-2-methyl-1H-imidazol-5-yl)-N-[4-(methylsulfonyl)phenyl]pyrimidin-2-amine) and Its Metabolites: Comparison of LC, UPLC and HTLC

  • Original
  • Published:
Chromatographia Aims and scope Submit manuscript

Abstract

A comparison is made of the separation and analysis of a test probe, AZD5438 (4-(1-isopropyl-2-methyl-1H-imidazol-5-yl)-N-[4-(methylsulfonyl)phenyl]pyrimidin-2-amine), and its metabolites using conventional LC, UPLC and high temperature liquid chromatography (HTLC). LC and UPLC separations were performed using reversed-phase water:acetonitrile solvent systems whilst HTLC was performed with an entirely aqueous mobile phase, using both isothermal and temperature gradient chromatography. Substantial reductions in run times were observed with both UPLC and HTLC compared to the conventional LC approach without loss in chromatographic resolution for the major metabolites. At temperatures in excess of 100 °C, thermal degradation of some of the metabolites was observed in an isothermal separation, however, the application of a thermal gradient proved successful in maintaining the structural integrity of the analytes and simultaneously separating the parent compound and its major metabolites.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Dell D (2004) Chromatographia 59:139–148s. doi:10.1365/s10337-003-0169-5

    Article  Google Scholar 

  2. Jandera P (2002) J Chromatogr A 965:239–261. doi:10.1016/S0021-9673(01)01323-1

    Article  CAS  Google Scholar 

  3. Johnson KA, Plumb R (2005) J Pharm Biomed Anal 39:805–810. doi:10.1016/j.jpba.2005.04.048

    Article  CAS  Google Scholar 

  4. Wren SAC (2005) J Pharm Biomed Anal 38:337–343. doi:10.1016/j.jpba.2004.12.028

    Article  CAS  Google Scholar 

  5. Zuiderwig FJ, Klinkenberg A (1956) Chem Eng Sci 5:271. doi:10.1016/0009-2509(56)80003-1

    Article  Google Scholar 

  6. Edge AM, Shillingford S, Smith C, Payne R, Wilson ID (2006) J Chromatogr A 1132:206–210. doi:10.1016/j.chroma.2006.07.081

    Article  CAS  Google Scholar 

  7. Apollonio LG, Pianca DJ, Whittall IR, Maher WA, Kyd JM (2006) J Chromatogr B Analyt Technol Biomed Life Sci 836:111–115. doi:10.1016/j.jchromb.2006.03.045

    Article  CAS  Google Scholar 

  8. Wang X, Stoll DR, Carr PW, Schoenmakers PJ (2006) J Chromatogr A 1125:177–181. doi:10.1016/j.chroma.2006.05.048

    Article  CAS  Google Scholar 

  9. Chruchwell MI, Twaddle NC, Meeker LR, Doerge DR (2005) J Chromatogr B Analyt Technol Biomed Life Sci 825:134–143. doi:10.1016/j.jchromb.2005.05.037

    Article  Google Scholar 

  10. Li R, Dong L, Huang J (2005) Anal Chim Acta 546:167–173. doi:10.1016/j.aca.2005.04.073

    Article  CAS  Google Scholar 

  11. Liu Y, Grinberg N, Thompson KC, Wenslow RM, Neue UD, Morrison D, Walter TH, O’Gara JE, Wyndham KD (2005) Anal Chim Acta 554:144–151. doi:10.1016/j.aca.2005.08.026

    Article  CAS  Google Scholar 

  12. Plumb RS, Rainville P, Smith BW, Johnson KA, Castro-Perez J, Wilson ID, Nicholson JK (2006) Anal Chem 78:7278–7283. doi:10.1021/ac060935j

    Article  CAS  Google Scholar 

  13. Edge AM, Shillingford S, Wilson ID (2007) Chromatographia 66:831–836. doi:10.1365/s10337-007-04331

    Article  CAS  Google Scholar 

  14. Teutenberg T, Goetze HJ, Tuerk J, Ploeger J, Kiffmeyer TK, Schmidt KG, Kohorst W, Rohe T, Jansen HD, Weber H (2006) J Chromatogr A 1114:89–96. doi:10.1016/j.chroma.2006.02.041

    Article  CAS  Google Scholar 

  15. Chen MH, Horvath C (1997) J Chromatogr A 788:51–61. doi:10.1016/S0021-9673(97)00715-2

    Article  CAS  Google Scholar 

  16. Abbott S, Achener P, Simpson R, Klink F (1981) J Chromatogr A 218:123–135. doi:10.1016/S0021-9673(00)82051-8

    Article  CAS  Google Scholar 

  17. http://www.waters.com/webassets/cms/library/docs/720002520en.pdf

  18. Hartonen K, Riekkola M-L (2008) Trends Analyt Chem 27:1–14

    Article  CAS  Google Scholar 

  19. Greibrokk T, Andersen T (2003) J Chromatogr A 1000:743–755. doi:10.1016/S0021-9673(02)01963-5

    Article  CAS  Google Scholar 

  20. Smith CJ, Shillingford S, Edge AM, Bailey C, Wilson ID (2008) Chromatographia 67:673–678. doi:10.1365/s10337-008-0572-z

    Article  CAS  Google Scholar 

  21. Gika HG, Theodoridis G, Extance J, Edge AM, Wilson ID (2008) J Chromatogr B Analyt Technol Biomed Life Sci 871:279–287. doi:10.1016/j.jchromb.2008.04.020

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge the support of Chris Smith from Shimadzu UK who supplied the LC and GC instrumentation and Waters for the supply of the Acquity UPLC system.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anthony M. Edge.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shillingford, S., Bishop, L., Smith, C.J. et al. Application of High Temperature LC to the Separation of AZD5438 (4-(1-Isopropyl-2-methyl-1H-imidazol-5-yl)-N-[4-(methylsulfonyl)phenyl]pyrimidin-2-amine) and Its Metabolites: Comparison of LC, UPLC and HTLC. Chroma 70, 37–44 (2009). https://doi.org/10.1365/s10337-009-1135-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1365/s10337-009-1135-7

Keywords

Navigation