Chromatographia

, Volume 70, Issue 1–2, pp 109–116 | Cite as

Optimization of the Extraction Conditions and Simultaneous Quantification of Six Flavonoid Glycosides in Flos Chrysanthemi by RP-LC

Original

Abstract

A sensitive, accurate and reliable reversed-phase liquid chromatographic method coupled with DAD (278 nm) was established for simultaneous quantification of six compounds in 20 cultivars of Flos Chrysanthemi. The method was carried out by using a Kromasil 100-5 C18 column with methanol–acetonitrile—1.414 × 10−2 mol L−1 aqueous phosphoric acid as a gradient mobile phase. The contents of the six flavonoid glycosides in Flos Chrysanthemi could be determined within 120 min. The linear calibration ranges for these were 0.42–126.00, 11.44–220.00, 0.53–530.00, 4.80–195.00, 11.00–220.00, and 0.12–200.00 μg mL−1. Their recoveries were 95.33–105.33% with RSDs from 0.10 to 2.00%. Their lower limits of quantification were 0.420, 1.144, 0.250, 0.480, 0.242, and 0.120 μg mL–1. The method can be used for analysis of the six flavonoid glycosides in Flos Chrysanthemi.

Keywords

Column liquid chromatography Quantification Orthogonal array design Flavonoid glycosides Flos Chrysanthemi 

Notes

Acknowledgements

This project was supported by the National Sciences and Technology Program (2004BA721A20, 2006BAI06A12-11) of China.

References

  1. 1.
    The State Pharmacopoeia Commission of China (2005) Pharmacopoeia of the People’s Republic of China, vol 1. Chemical Industry Press, Beijing, p 218Google Scholar
  2. 2.
    Xu WB, Guo QS, Li YN, Wang T (2005) China J Chin Mater Med 30(21):1645–1648Google Scholar
  3. 3.
    Larsen RU, Persson L (1999) Sci Hortic Amsterdam 80:73–89. doi: 10.1016/S0304-4238(98)00219-2 CrossRefGoogle Scholar
  4. 4.
    Wang YJ, Yang XW, Guo QS (2008) China J Chin Mater Med 33(5):526–530Google Scholar
  5. 5.
    Dicks JW (1971) Pestic Sci 2:176–178. doi: 10.1002/ps.2780020411 CrossRefGoogle Scholar
  6. 6.
    Duh PD, Tu YY, Yen GC (1999) Lebensm-Wiss u-Technol 32:269–277CrossRefGoogle Scholar
  7. 7.
    Duh PD (1999) Food Chem 66:471–476. doi: 10.1016/S0308-8146(99)00081-3 CrossRefGoogle Scholar
  8. 8.
    Lee JS, Kim HJ, Lee YS (2003) Planta Med 69:859–861. doi: 10.1055/s-2003-43207 CrossRefGoogle Scholar
  9. 9.
    Kim SY, Kim JH, Kim SK, Oh MJ, Jung MY (1994) J Am Oil Chem Soc 71:633–640. doi: 10.1007/BF02540592 CrossRefGoogle Scholar
  10. 10.
    Sun JM, Yang JS, Zhang H (2007) Chem Pharm Bull Tokyo 55:474–476. doi: 10.1248/cpb.55.474 CrossRefGoogle Scholar
  11. 11.
    Kong Q, Wu C (2004) Chin Tradit Herbal Drugs 35:1001–1002Google Scholar
  12. 12.
    Zhang XY, Duan LH, Zhai D (2008) Lishizhen Med Mater Med Res 19:1702–1704Google Scholar
  13. 13.
    Peng YR, Shi L, Luo YH, Ding YF (2006) Lishizhen Med Mater Med Res 17:1131–1132Google Scholar
  14. 14.
    Liu JQ, Wu DL, Wang L, Shen QQ, Liu JS, Wang JT (2001) Chin Tradit Pat Med 23:52–53Google Scholar
  15. 15.
    Liu JQ, Wu DL, Wang L, Liu JS, Wang JT (2001) Chin Tradit Herbal Drugs 32:308–310Google Scholar
  16. 16.
    Zhu LY, Duan JA, Shen H, Qian DW, Zhang J (2007) Chin Tradit Pat Med 29:1–3Google Scholar
  17. 17.
    Li LP, Jiang HD (2006) J Pharm Biomed Anal 41:261–265. doi: 10.1016/j.jpba.2005.10.019 CrossRefGoogle Scholar

Copyright information

© Vieweg+Teubner | GWV Fachverlage GmbH 2009

Authors and Affiliations

  1. 1.State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical SciencesPeking UniversityBeijingChina
  2. 2.Institute of Chinese Medicinal MaterialsNanjing Agricultural UniversityNanjingChina
  3. 3.Institute of Medicinal Plant Development and Peking Union Medical CollegeChinese Academy of Medical Science BeijingChina

Personalised recommendations