Chromatographia

, Volume 70, Issue 1–2, pp 247–251 | Cite as

Extraction of Astaxanthin from Shrimp Waste Using Pressurized Hot Ethanol

Full Short Communication

Abstract

An efficient and environmentally sustainable extraction method is proposed for the enrichment of a high-value pigment, astaxanthin, from a low-value raw material, shrimp waste. Ethanol at elevated temperature and pressure was used as a “green” extraction solvent. An experimental design approach based on central composite design was used to investigate the dependence of pressurized liquid extraction (PLE) operating variables (pressure, temperature, extraction time) on the recovered astaxanthin concentration from shrimp waste. The results show that at a 95% confidence level, the most significant PLE operating variables were extraction temperature and time. Extraction pressure had only a minor effect on the astaxanthin recovery in the studied experimental conditions. The maximum astaxanthin recovery obtainable by PLE was calculated from the chemometrics results and then appraised by experiments. Our results show astaxanthin yields of around 24 mg kg−1 shrimp waste. The reproducibility of the developed PLE method is good, showing a relative standard deviation of 3.5% (n = 6) for astaxanthin.

Keywords

Column liquid chromatography Pressurized liquid extraction Shrimp waste Astaxanthin 

Notes

Acknowledgments

Can Quan thanks Dr. Rolf Danielsson of Uppsala University for many helpful discussions of statistics knowledge and Dr. Jing Gong of Uppsala University who helped out with optimization of PLE conditions. Charlotta Turner acknowledges the Swedish Research Council for Environment, Agricultural Sciences and Spatial Planning (FORMAS, 209-2006-1346); the Swedish Research Council (VR, 2006-4084); and the Swedish Foundation for Strategic Research (SSF, 2005:0073/13).

References

  1. 1.
    Lin WC, Chien JT, Chen BH (2005) J Agric Food Chem 53:5144–5149. doi: 10.1021/jf050664y CrossRefGoogle Scholar
  2. 2.
    Torrissen O, Tidemann E, Hansen F, Raa J (1981/1982) Aquaculture 26:77–83. doi: 10.1016/0044-8486(81)90111-3
  3. 3.
    Eskilsson CS, Hartonen K, Mathiasson L, Riekkola ML (2004) J Sep Sci 27:59–64. doi: 10.1002/jssc.200301566 CrossRefGoogle Scholar
  4. 4.
    Miki W (1991) Pure Appl Chem 63:141–146. doi: 10.1351/pac199163010141 CrossRefGoogle Scholar
  5. 5.
    Naguib Yousry MA (2000) J Agric Food Chem 48:1150–1154. doi: 10.1021/jf991106k CrossRefGoogle Scholar
  6. 6.
    Shahidi F, Botta FR (1994) Seafoods: Chemistry, processing, technology and quality (ed) Chapman and Hall. NY, USA, pp 125–137Google Scholar
  7. 7.
    Guillou A, Khalil M, Adambounou L (1995) Aquaculture 130:351–360. doi: 10.1016/0044-8486(94)00324-H CrossRefGoogle Scholar
  8. 8.
    Sachindra NM, Bhaskar N, Siddegowda GS, Sathisha D, Suresh PV (2007) Bioresour Technol 98:1642–1646. doi: 10.1016/j.biortech.2006.05.041 CrossRefGoogle Scholar
  9. 9.
    Torrissen OJ, Hardy RW, Shearer KD (1989) CRC Crit Rev Aquat Sci 1:209–225Google Scholar
  10. 10.
    Valderrama JO, Perrut M, Majewski W (2003) J Chem Eng Data 48:827–830. doi: 10.1021/je020128r CrossRefGoogle Scholar
  11. 11.
    Yuan JP, Chen F (1999) J Agric Food Chem 47(1):31–35 12CrossRefGoogle Scholar
  12. 12.
    Nobre B, Marcelo F, Passos R, Beirao L, Palavra A, Gouveia L, Mendes R (2006) Eur Food Res Technol 223:787–790. doi: 10.1007/s00217-006-0270-8 CrossRefGoogle Scholar
  13. 13.
    Richter BE, Jones BA, Ezzell JL, Porter NL, Avdalovic N, Pohl C (1996) Anal Chem 68:1033–1039. doi: 10.1021/ac9508199 CrossRefGoogle Scholar
  14. 14.
    Ong ES, Len SM (2004) J Chromatogr Sci 42(4):211–216Google Scholar
  15. 15.
    Isaac G, Waldeback M, Eriksson U, Odham G, Markides KE (2005) J Agric Food Chem 53:5506–5512. doi: 10.1021/jf0501286 CrossRefGoogle Scholar
  16. 16.
    Herrero M, Ibanez E, Senorans J, Cifuentes A (2004) J Chromatogr A 1047:195–203Google Scholar
  17. 17.
    Hawthorne SB, Grabanski CB, Martin E, Miller DJ (2000) J Chromatogr A 892:421–433. doi: 10.1016/S0021-9673(00)00091-1 CrossRefGoogle Scholar
  18. 18.
    Denery JR, Dragull K, Tang CS, Li QX (2004) Anal Chim Acta 501:175–181. doi: 10.1016/j.aca.2003.09.026 CrossRefGoogle Scholar
  19. 19.
    Brereton RG (1990) Chemometrics: applications of mathematics and statistics to laboratory systems. In: Horwood E (ed), Chichester, pp 143–150Google Scholar
  20. 20.
    López M, Arce L, Garrido J, Rıos A, Valcárcel M (2004) Talanta 64:726–731. doi: 10.1016/j.talanta.2004.03.048 CrossRefGoogle Scholar
  21. 21.
    Gan J, Papierniks K, Koskinen WC, Yates SR (1999) Environ Sci Technol 3:3249–3253. doi: 10.1021/es990145+ CrossRefGoogle Scholar
  22. 22.
    Rosa PAJ, Azevedo AM, Aires-Barros MR (2007) J Chromatogr A 1141:50–60. doi: 10.1016/j.chroma.2006.11.075 CrossRefGoogle Scholar
  23. 23.
    Breithaupt DE (2004) J Agric Food Chem 52:3870–3875. doi: 10.1021/jf049780b CrossRefGoogle Scholar
  24. 24.
    Yuan JP, Chen F (1998) J Agric Food Chem 46:3371–3375. doi: 10.1021/jf980039b CrossRefGoogle Scholar
  25. 25.
    Olivella MA (2005) Anal Bioanal Chem 383:107–114. doi: 10.1007/s00216-005-3383-1 CrossRefGoogle Scholar
  26. 26.
    Shahidi YF, Synowiecki J (1991) J Agric Food Chem 39:1527–1532. doi: 10.1021/jf00008a032 CrossRefGoogle Scholar

Copyright information

© Vieweg+Teubner | GWV Fachverlage GmbH 2009

Authors and Affiliations

  1. 1.Division of ChemistryNational Institute of MetrologyBeijingChina
  2. 2.Department of Physical and Analytical ChemistryUppsala UniversityUppsalaSweden

Personalised recommendations