Skip to main content
Log in

Fast LC–MS Electrospray Ionization for the Quantification of Digoxin in Human Plasma and Its Application to Bioequivalence Studies

  • Original
  • Published:
Chromatographia Aims and scope Submit manuscript

Abstract

A fast, sensitive and specific liquid chromatography-mass spectrometry method has been developed for quantification of digoxin in human plasma. The method was optimized to bioequivalence studies aiming higher sensitivity and selectivity than previously published methods, in addition to shorter run time allowing high-throughput sample analyses from volunteers. Chromatographic separation was achieved by an RP-18e column hyphenated to an API 5000 mass spectrometer system set at negative electrospray ionization and operating in the MRM mode. Calibration curve was linear over a wide range of concentration (50.0–6000.0 pg mL−1), with the lower limit of quantification at 50.0 pg mL−1 and without interfering peaks at the retention time of digoxin (2.09 min). Dexamethasone was used as internal standard and samples were cleaned up by liquid-liquid extraction obtaining a mean recovery of 73.8%. Validation results confirmed inter-batch accuracy (−8.66 to 5.78%), precision (4.1–10.6%) and stability, in accordance with the U.S. Food and Drug Administration and the Brazilian National Health Surveillance Agency guidelines. The developed analytical method could be successfully applied to a single oral dose (0.25 mg), one-way, randomized, two-sequence, crossover bioequivalence study validating, up to date, the fastest analysis and the most sensitive and specific method already published for digoxin quantification.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Silva P (2006) Farmacologia. Guanabara Koogan, Rio de Janeiro, pp 63–67, 642

  2. Rathore S, Curtis J, Wang Y, Bristow M, Krumholz H (2003) JAMA 289:871–878. doi:10.1001/jama.289.7.871

    Article  CAS  Google Scholar 

  3. Pähkla R, Irs A, Oselin K, Rootslane L (1999) J Clin Pharm Ther 24:375–380. doi:10.1046/j.1365-2710.1999.00239.x

    Article  Google Scholar 

  4. Graefe KA, Tang Z, Karnes HT (2000) J Chromatogr B Anal Technol Biomed Life Sci 745:305–314. doi:10.1016/S0378-4347(00)00304-2

    Article  CAS  Google Scholar 

  5. Belsner K, Büchele B (1996) J Chromatogr B Anal Technol Biomed Life Sci 682:95–107. doi:10.1016/0378-4347(96)00056-4

    Article  CAS  Google Scholar 

  6. Garteiz D, Din S, Morrow R (2003) Quantification of digoxin in human plasma using negative ion electrospray ionization LC/MS. Varian Inc., Houston

    Google Scholar 

  7. Tracqui A, Kintz P, Ludes B (1997) J Cromatogr. B 692:101–109. doi:10.1016/S0378-4347(96)00462-8

    Article  CAS  Google Scholar 

  8. Baselt RC, Cravey RH (1995) Disposition of toxic drugs and chemicals in man. Chemical Toxicology Institute, Foster City, p 802

    Google Scholar 

  9. Stone JA, Soldin SJ (1989) Clin Chem 35:1326–1331

    CAS  Google Scholar 

  10. Stoll RG, Christensen MS, Sakmar E, Wagner JG (1972) Res Commun Mol Pathol Pharmacol 4:503–510

    CAS  Google Scholar 

  11. Frommherz L, Kohler H, Brinkmann B, Lehr M, Beike J (2008) Int J Legal Med 122:109. doi:10.1007/s00414-007-0175-5

    Article  CAS  Google Scholar 

  12. Yao M, Zhang H, Chong S, Zhu M, Morrison RA (2003) J Pharm Biomed Anal 32:1189. doi:10.1016/S0731-7085(03)00050-5

    Article  CAS  Google Scholar 

  13. ANVISA, Agência Nacional de Vigilância Sanitária (2003) RE no 899, de 29 de Maio de 2003. Guia para validação de métodos analíticos e bioanalíticos

  14. FDA, Center for Drug Evaluation and Research (2001) U S Department of Health and Human Services, Guidance for Industry, Bionalytical Method Validation

  15. United States Pharmacopeia Convention (2003) United States pharmacopeia, USP 26. National Publishing, Philadelphia

    Google Scholar 

  16. Bansal S, DeStefano A (2007) AAPS J 9:E109–E114. doi:10.1208/aapsj0901011

    Article  CAS  Google Scholar 

  17. Zöllner P, Leitner A, Lubda D, Cabrera K, Lindner W (2000) Chromatographia 52:818–820. doi:10.1007/BF02491011

    Article  Google Scholar 

  18. Fadden KM, Gillespie J, Carney B, O’Driscoll D (2006) J Chromatogr A 1120:54–60. doi:10.1016/j.chroma.2006.01.071

    Article  Google Scholar 

  19. Jedlička A, Grafnetterová T, Miller V (2003) J Chromatogr B Anal Technol Biomed Life Sci 33:109–115

    Google Scholar 

Download references

Acknowledgements

All financial support was provided by FUNAPE and the Institute of Pharmaceutical Sciences, Goiânia, GO, Brazil.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kênnia R. Rezende.

Additional information

Separation Analysis Applied to Pharmaceutical Sciences in Brazil.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Teixeira, L.S., Mundim, I.M., Souza, W.C. et al. Fast LC–MS Electrospray Ionization for the Quantification of Digoxin in Human Plasma and Its Application to Bioequivalence Studies. Chroma 69 (Suppl 2), 149–156 (2009). https://doi.org/10.1365/s10337-009-1014-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1365/s10337-009-1014-2

Keywords

Navigation