, Volume 69, Supplement 2, pp 149–156 | Cite as

Fast LC–MS Electrospray Ionization for the Quantification of Digoxin in Human Plasma and Its Application to Bioequivalence Studies

  • Leonardo S. Teixeira
  • Iram M. Mundim
  • Weidson C. Souza
  • Douglas R. Ramos
  • Karine B. Bellorio
  • Fernanda G. Marques
  • Kênnia R. Rezende


A fast, sensitive and specific liquid chromatography-mass spectrometry method has been developed for quantification of digoxin in human plasma. The method was optimized to bioequivalence studies aiming higher sensitivity and selectivity than previously published methods, in addition to shorter run time allowing high-throughput sample analyses from volunteers. Chromatographic separation was achieved by an RP-18e column hyphenated to an API 5000 mass spectrometer system set at negative electrospray ionization and operating in the MRM mode. Calibration curve was linear over a wide range of concentration (50.0–6000.0 pg mL−1), with the lower limit of quantification at 50.0 pg mL−1 and without interfering peaks at the retention time of digoxin (2.09 min). Dexamethasone was used as internal standard and samples were cleaned up by liquid-liquid extraction obtaining a mean recovery of 73.8%. Validation results confirmed inter-batch accuracy (−8.66 to 5.78%), precision (4.1–10.6%) and stability, in accordance with the U.S. Food and Drug Administration and the Brazilian National Health Surveillance Agency guidelines. The developed analytical method could be successfully applied to a single oral dose (0.25 mg), one-way, randomized, two-sequence, crossover bioequivalence study validating, up to date, the fastest analysis and the most sensitive and specific method already published for digoxin quantification.


Column liquid chromatography-mass spectrometry Bioequivalence and pharmacokinetic study Method validation Digoxin 



All financial support was provided by FUNAPE and the Institute of Pharmaceutical Sciences, Goiânia, GO, Brazil.


  1. 1.
    Silva P (2006) Farmacologia. Guanabara Koogan, Rio de Janeiro, pp 63–67, 642Google Scholar
  2. 2.
    Rathore S, Curtis J, Wang Y, Bristow M, Krumholz H (2003) JAMA 289:871–878. doi: 10.1001/jama.289.7.871 CrossRefGoogle Scholar
  3. 3.
    Pähkla R, Irs A, Oselin K, Rootslane L (1999) J Clin Pharm Ther 24:375–380. doi: 10.1046/j.1365-2710.1999.00239.x CrossRefGoogle Scholar
  4. 4.
    Graefe KA, Tang Z, Karnes HT (2000) J Chromatogr B Anal Technol Biomed Life Sci 745:305–314. doi: 10.1016/S0378-4347(00)00304-2 CrossRefGoogle Scholar
  5. 5.
    Belsner K, Büchele B (1996) J Chromatogr B Anal Technol Biomed Life Sci 682:95–107. doi: 10.1016/0378-4347(96)00056-4 CrossRefGoogle Scholar
  6. 6.
    Garteiz D, Din S, Morrow R (2003) Quantification of digoxin in human plasma using negative ion electrospray ionization LC/MS. Varian Inc., HoustonGoogle Scholar
  7. 7.
    Tracqui A, Kintz P, Ludes B (1997) J Cromatogr. B 692:101–109. doi: 10.1016/S0378-4347(96)00462-8 CrossRefGoogle Scholar
  8. 8.
    Baselt RC, Cravey RH (1995) Disposition of toxic drugs and chemicals in man. Chemical Toxicology Institute, Foster City, p 802Google Scholar
  9. 9.
    Stone JA, Soldin SJ (1989) Clin Chem 35:1326–1331Google Scholar
  10. 10.
    Stoll RG, Christensen MS, Sakmar E, Wagner JG (1972) Res Commun Mol Pathol Pharmacol 4:503–510Google Scholar
  11. 11.
    Frommherz L, Kohler H, Brinkmann B, Lehr M, Beike J (2008) Int J Legal Med 122:109. doi: 10.1007/s00414-007-0175-5 CrossRefGoogle Scholar
  12. 12.
    Yao M, Zhang H, Chong S, Zhu M, Morrison RA (2003) J Pharm Biomed Anal 32:1189. doi: 10.1016/S0731-7085(03)00050-5 CrossRefGoogle Scholar
  13. 13.
    ANVISA, Agência Nacional de Vigilância Sanitária (2003) RE no 899, de 29 de Maio de 2003. Guia para validação de métodos analíticos e bioanalíticosGoogle Scholar
  14. 14.
    FDA, Center for Drug Evaluation and Research (2001) U S Department of Health and Human Services, Guidance for Industry, Bionalytical Method ValidationGoogle Scholar
  15. 15.
    United States Pharmacopeia Convention (2003) United States pharmacopeia, USP 26. National Publishing, PhiladelphiaGoogle Scholar
  16. 16.
    Bansal S, DeStefano A (2007) AAPS J 9:E109–E114. doi: 10.1208/aapsj0901011 CrossRefGoogle Scholar
  17. 17.
    Zöllner P, Leitner A, Lubda D, Cabrera K, Lindner W (2000) Chromatographia 52:818–820. doi: 10.1007/BF02491011 CrossRefGoogle Scholar
  18. 18.
    Fadden KM, Gillespie J, Carney B, O’Driscoll D (2006) J Chromatogr A 1120:54–60. doi: 10.1016/j.chroma.2006.01.071 CrossRefGoogle Scholar
  19. 19.
    Jedlička A, Grafnetterová T, Miller V (2003) J Chromatogr B Anal Technol Biomed Life Sci 33:109–115Google Scholar

Copyright information

© Vieweg+Teubner | GWV Fachverlage GmbH 2009

Authors and Affiliations

  • Leonardo S. Teixeira
    • 1
  • Iram M. Mundim
    • 1
  • Weidson C. Souza
    • 1
  • Douglas R. Ramos
    • 1
  • Karine B. Bellorio
    • 1
  • Fernanda G. Marques
    • 2
  • Kênnia R. Rezende
    • 2
  1. 1.Instituto de Ciências FarmacêuticasAlameda Coronel Eugênio JardimGoiâniaBrazil
  2. 2.Faculdade de FarmáciaUniversidade Federal de Goiás, Praça UniversitáriaGoiâniaBrazil

Personalised recommendations