Chromatographia

, Volume 69, Issue 5–6, pp 567–570 | Cite as

A New Inverse GC Method for Separating Surface Retention Volume from Total Retention Volume for Characterization of the Surface Properties of Polymers at Temperatures above T g

Full Short Communication
  • 56 Downloads

Abstract

This paper introduces a new inverse gas chromatographic method for separating surface retention volume (V s) from total retention volume (V n), to enable characterization of the surface properties of polymeric material with low T g. P(VDF-co-HFP) was chosen to prove the method. After correction for ‘inert’ solid support effect and extrapolation of the flow rate to zero, V s of every probe was separated successfully from V n. The surface properties of P(VDF-co-HFP) calculated from V s were: dispersive free energy 21.5 ± 0.2 mJ m−2, Lewis acid number, K a, 0.091 ± 0.002, and base number, K b, 0.209 ± 0.008.

Keywords

Inverse gas chromatography Glass transition temperature Polymers 

References

  1. 1.
    Gavril D, Nieuwenhuys BE (2004) J Chromatogr A 1045:161–172. doi: 10.1016/j.chroma.2004.06.015 CrossRefGoogle Scholar
  2. 2.
    Katsanos NA, Gavril D, Kapolos J, Karaiskakis G (2004) J Colloid Interface Sci 270:455–461. doi: 10.1016/j.jcis.2003.07.037 CrossRefGoogle Scholar
  3. 3.
    Katsanos NA (2002) J Chromatogr A 969:3–8 PII: S0021-9673(02)00992-5CrossRefGoogle Scholar
  4. 4.
  5. 5.
    Santos JMRCA, Guthrie JT (2005) Mater Sci Eng Rep 50:79–107. doi: 10.1016/j.mser.2005.07.003 CrossRefGoogle Scholar
  6. 6.
    Shi BL, Zhang QR, Jia LN, Liu Y, Li B (2007) J Chromatogr A 1149:390–393. doi: 10.1016/j.chroma.2007.03.127 CrossRefGoogle Scholar
  7. 7.
    Mukhopadhyay P, Schreiber HP (1993) Macromolecules 26:6391–6396. doi: 10.1021/ma00076a014 CrossRefGoogle Scholar
  8. 8.
    Chen CT, Al-Saigh ZY (1989) Macromolecules 22:2974–2981. doi: 10.1021/ma00197a017 CrossRefGoogle Scholar
  9. 9.
    Abel ML, Chehimia MM, Frickera F, Delamara M, Brown AM, Watts JF (2002) J Chromatogr A 969:273–285 PII:S0021-9673(02)00895-6CrossRefGoogle Scholar
  10. 10.
    Santos JMRCA, Fagelman K, Guthrie JT (2002) J Chromatogr A 969:119–132 PII:S0021-9673(02)00902-0CrossRefGoogle Scholar
  11. 11.
    Voelkel A, Andrzejewska E, Maga R, Andrzejewski M (1996) Polymer Guildf 37:455–462. doi: 10.1016/0032-3861(96)82915-6 CrossRefGoogle Scholar
  12. 12.
    Bailey RA, Persaud KC (1998) Anal Chim Acta 363:147–156 PII:S0003-2670(98)00084-1CrossRefGoogle Scholar
  13. 13.
    Chehimi MM, Abel ML, Perruchot C, Delamar M, Lascelles SF, Armes SP (1999) Synth Met 104:51–59 PII:S0379-6779(99)00040-5CrossRefGoogle Scholar
  14. 14.
    Oliva V, Mrabeta B, Nevesa MIB, Chehimia MM, Benzarti K (2002) J Chromatogr A 969:261–272 PII:S0021-9673(02)00894-4CrossRefGoogle Scholar
  15. 15.
    Perruchota C, Chehimia MM, Vaulaya MJ, Benzartib K (2006) Cement Concr Res 36:305–319. doi: 10.1016/j.cemconres.2005.02.005 CrossRefGoogle Scholar
  16. 16.
    Dove JW, Buckton G, Doherty C (1996) Int J Pharm 138:199–206 PII:S0378-5173(96)04535-8CrossRefGoogle Scholar
  17. 17.
    Planinšek O, Zadnik J, Rozman S, Kunaver M, Dreu R, Srčič S (2003) Int J Pharm 256:17–23. doi: 10.1016/S0378-5173(03)00058-9 CrossRefGoogle Scholar
  18. 18.
    Ohta M, Buckton G (2004) Int J Pharm 272:121–128. doi: 10.1016/j.ijpharm.2003.12.007 CrossRefGoogle Scholar

Copyright information

© Vieweg+Teubner | GWV Fachverlage GmbH 2008

Authors and Affiliations

  1. 1.Department of Chemistry, College of ScienceNortheast Forestry UniversityHarbinChina

Personalised recommendations