Skip to main content
Log in

Separation of Enantiomers and Control of Elution Order of β-Lactams by GC Using Cyclodextrin-Based Chiral Stationary Phases

  • Full Short Communication
  • Published:
Chromatographia Aims and scope Submit manuscript

Abstract

Enantiomers of 19 racemic β-lactams, with 3 and 4-position substitutions, were separated using gas chromatography. Excellent results were achieved on derivatized cyclodextrin-based GC chiral stationary phases (CSPs). All 19 compounds were baseline separated, most with high resolution factors. The Chiraldex G-TA was found to be the most powerful CSP with the broadest enantioselectivity, while Chiraldex B-DM produced the fastest separations for most of the compounds assayed. Results obtained in this work suggest that GC can serve as a potential method for the enantiomeric separation of sufficiently volatile solid β-lactams.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Matagne A, Lamotte-Brasseur J, Frere JM (1998) Biochem J 330:581–598

    CAS  Google Scholar 

  2. Lamotte J, Dive G, Ghuysen JM (1991) Eur J Med Chem 26:43–50. doi:10.1016/0223-5234(91)90211-5

    Article  CAS  Google Scholar 

  3. Peter A, Arki A, Fülöp F, Armstrong DW (2005) Chirality 17:193–200. doi:10.1002/chir.20149

    Article  CAS  Google Scholar 

  4. Palomo C, Aizpurua JM, Ganboa I, Oiarbide M (2001) Synlett 12:1813–1826. doi:10.1055/s-2001-18733

    Article  Google Scholar 

  5. Wasserman HH, Matsuyama H, Robinson RP (2002) Tetrahedron 58:7177–7190. doi:10.1016/S0040-4020(02)00731-7

    Article  CAS  Google Scholar 

  6. Allin SM, Khera JS, Witherington J, Elsegood MR (2006) Tetrahedron Lett 47:5737–5739. doi:10.1016/j.tetlet.2006.06.033

    Article  CAS  Google Scholar 

  7. Palomo C, Ganboa I, Oiarbide M, Sciano GT, Miranda JL (2002) Arkivoc 5:8–16

    Google Scholar 

  8. Basak A, Ghosh SC, Das AK, Bertolasi V (2005) Org Biomol Chem 3:4050–4052. doi:10.1039/b511029g

    Article  CAS  Google Scholar 

  9. Alcaide B, Almendros P, Alonso JM, Aly MF, Pardo C, Saez E et al (2002) Synthetic application. J Org Chem 67:7004–7013. doi:10.1021/jo025924e

    Article  CAS  Google Scholar 

  10. Huang K, Breitbach ZS, Armstrong DW (2006) Tetrahedron Asymmetry 17:2821–2832. doi:10.1016/j.tetasy.2006.10.014

    Article  CAS  Google Scholar 

  11. Pirkle WH, Tsipouras A, Hyun MH, Hart DJ, Lee CS (1986) J Chromatogr A 358:377–384. doi:10.1016/S0021-9673(01)90351-6

    Article  CAS  Google Scholar 

  12. Huang T, Kuang C, Zhou J, Gou D (1991) Fenxi Huaxue 19:687–689

    CAS  Google Scholar 

  13. Berkecz R, Torok R, Llisz L, Forro E, Armstrong DW, Peter A (2006) Chromatographia 63:S37–S43. doi:10.1365/s10337-005-0701-x

    Article  CAS  Google Scholar 

  14. Berkecz R, Llisz L, Forró E, Fülöp F, Armstrong DW, Peter A (2006) Chromatographia 63:S29–S35. doi:10.1365/s10337-005-0700-y

    Article  CAS  Google Scholar 

  15. Ilisz I, Berkecz R, Peter A (2006) J Sep Sci 29:1305–1321. doi:10.1002/jssc.200600046

    Article  CAS  Google Scholar 

  16. Okamoto Y, Hatada K (1990) Jpn Kokai Tokkyo Koho 1–9

  17. Okamoto Y, Senoh T, Nakane H, Hatada K (1989) Chirality 1:216–222. doi:10.1002/chir.530010307

    Article  CAS  Google Scholar 

  18. Okamoto Y, Kaida Y (1994) J Chromatogr A 666:403–419. doi:10.1016/0021-9673(94)80400-1

    Article  CAS  Google Scholar 

  19. Sun P, Wang C, Armstrong DW, Peter A, Forro E (2006) J Liquid Chromatogr Relat Technol 29:1847–1860. doi:10.1080/10826070600757540

    Article  CAS  Google Scholar 

  20. Jiang C, Armstrong DW, Peter A, Fülöp F (2007) J Liquid Chromatogr Relat Technol 30:1709–1721. doi:10.1080/10826070701360236

    Article  CAS  Google Scholar 

  21. Forró E, Fülöp F (2003) Org Lett 5:1209–1212. doi:10.1021/ol034096o

    Article  Google Scholar 

  22. Forró E, Fülöp F (2004) Tetrahedron Asymmetry 15:573–575. doi:10.1016/j.tetasy.2003.12.034

    Article  Google Scholar 

  23. Forró E, Fülöp F (2004) Tetrahedron Asymmetry 15:2875–2880. doi:10.1016/j.tetasy.2004.05.029

    Article  Google Scholar 

  24. Forró E, Fülöp F (2006) Chem Eur J 12:2587–2592. doi:10.1002/chem.200501286

    Article  Google Scholar 

  25. Forró E, Paál T, Tasnádi G, Fülöp F (2006) Adv Synth Catal 348:917–923. doi:10.1002/adsc.200505434

    Article  Google Scholar 

  26. Berthod A, Li W, Armstrong DW (1992) Anal Chem 64:873–879. doi:10.1021/ac00032a009

    Article  CAS  Google Scholar 

  27. Li WY, Jin HL, Armstrong DW (1990) J Chromatogr A 509:303–324. doi:10.1016/S0021-9673(01)93089-4

    Article  CAS  Google Scholar 

  28. Armstrong DW, Li WY, Pitha J (1990) Anal Chem 62:214–217. doi:10.1021/ac00201a023

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We gratefully acknowledge the support from National Institute of Health (GM053825-11) and OTKA grant K 67573 for this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniel W. Armstrong.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Huang, K., Armstrong, D.W., Forro, E. et al. Separation of Enantiomers and Control of Elution Order of β-Lactams by GC Using Cyclodextrin-Based Chiral Stationary Phases. Chroma 69, 331–337 (2009). https://doi.org/10.1365/s10337-008-0888-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1365/s10337-008-0888-8

Keywords

Navigation