Skip to main content
Log in

Chromatographic Analysis of Adsorption: Chemisorption and/or Physisorption

  • Original
  • Published:
Chromatographia Aims and scope Submit manuscript

Abstract

Eight systems namely the C6H6 /Fe2O3, C6H6/NO2/Fe2O3, C6H5CH3/Fe2O3, C6H5CH3/NO2/Fe2O3, C6H6/ZnO, C6H6/NO2/ZnO, C6H5CH3/ZnO, C6H5CH3/NO2/ZnO are examined through a version of inverse gas chromatography and six physicochemical adsorption quantities are determined for each heterogeneous system. Thus, the reversed flow—(inverse) gas chromatography is used for the investigation and study of adsorption phenomena taking place on these heterogeneous solid surfaces. In the case of iron oxide the presence of nitrogen dioxide facilitates the chemisorption. This is not obvious in the case of zinc oxide. However, nitrogen dioxide facilitates the adsorption of benzene and toluene through van der Waals forces in both oxides. Through the experimental local quantities determined and the detailed time-resolved analysis, useful information for the nature and the strength of the adsorbate–adsorbent as well as the adsorbate–adsorbate interactions have been extracted giving an insight into the topography of the active sites and the nature of the surface bonds.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Sanford C, Ross S (1954) J Phys Chem 58:288. doi:10.1021/j150513a026

    Article  CAS  Google Scholar 

  2. Ross S, Olivier JP (1961) J Phys Chem 65:608–615. doi:10.1021/j100822a005

    Article  CAS  Google Scholar 

  3. Roubani-Kalantzopoulou F, Kalogirou E, Kalantzopoulos A, Metaxa H, Thede R, Katsanos NA et al (1997) Chromatographia 46:161–169. doi:10.1007/BF02495328

    Article  Google Scholar 

  4. Katsanos NA, Arvanitopoulou E, Roubani-Kalantzopoulou F, Kalantzopoulos A (1999) J Phys Chem B 103:1152–1157. doi:10.1021/jp984041h

    Article  CAS  Google Scholar 

  5. Katsanos NA, Iliopoulou E, Roubani-Kalantzopoulou F, Kalogirou E (1999) J Phys Chem B 103:10228–10233. doi:10.1021/jp992788h

    Article  CAS  Google Scholar 

  6. Margariti S, Bassiotis I, Roubani-Kalantzopoulou F (2004) J Colloid Interface Sci 274:413–420. doi:10.1016/j.jcis.2004.02.025

    Article  CAS  Google Scholar 

  7. Balard H, Papirer E (1993) Prog Org Coat 22:1–17. doi:10.1016/0033-0655(93)80011-X

    Article  CAS  Google Scholar 

  8. Quinones I, Guiochon G (1996) J Colloid Interface Sci 183:57–67. doi:10.1006/jcis.1996.0518

    Article  CAS  Google Scholar 

  9. Roubani-Kalantzopoulou F (1998) J Chromatogr A 806:293–303. doi:10.1016/S0021-9673(98)00058-2

    Article  CAS  Google Scholar 

  10. Gavril D, Loukopoulos V, Georgaka A, Gabriel A, Karaiskakis G (2005) J Chromatogr A 1087:158–168. doi:10.1016/j.chroma.2005.04.065

    Article  CAS  Google Scholar 

  11. Bakaev VA, Steele WA (1992) Langmuir 8:1372–1378. doi:10.1021/la00041a021

    Article  CAS  Google Scholar 

  12. Bakaeva TI, Bakaev VA, Pantano CG (2002) J Chromatogr A 969:153–165. doi:10.1016/S0021-9673(02)00899-3

    Article  Google Scholar 

  13. Charmas B, Leboda R (2000) J Chromatogr A 886:133–152. doi:10.1016/S0021-9673(00)00432-5

    Article  CAS  Google Scholar 

  14. Gavril D, Loukopoulos V, Karaiskakis G (2004) Chromatographia 59:721–729. doi:10.1365/s10337-004-0278-9

    Article  CAS  Google Scholar 

  15. Metaxa E, Agelakopoulou T, Bassiotis I, Margariti S, Siokos V, Roubani-Kalantzopoulou F (2007) Appl Surf Sci 253:5841–5845. doi:10.1016/j.apsusc.2006.12.041

    Article  CAS  Google Scholar 

  16. Giannoudakos A, Agelakopoulou T, Asteriadis I, Kompitsas M, Roubani-Kalantzopoulou F (2008) J Chromatogr A 1187:216–225. doi:10.1016/j.chroma.2008.01.082

    Article  CAS  Google Scholar 

  17. Agelakopoulou T, Bassiotis I, Metaxa E, Roubani-Kalantzopoulou F (2007) Atmos Environ 41:2009–2018. doi:10.1016/j.atmosenv.2006.10.002

    Article  CAS  Google Scholar 

  18. Jaroniek M, Madey R (1988) In: Physical adsorption on heterogeneous solids. Elsevier, Amsterdam, p 13

  19. Rudzinski W, Everett DH (1992) In: Adsorption of gases on heterogeneous surfaces. Academic Press, London

  20. Roubani-Kalantzopoulou F (2004) J Chromatogr A 1037:191–221. doi:10.1016/j.chroma.2003.12.005

    Article  CAS  Google Scholar 

  21. Tylipaki H, Margariti S, Bassiotis I, Roubani-Kalantzopoulou F (2003) Chromatographia 58:1–7

    Google Scholar 

  22. Kiselev AV, Yashin I (1969) In: Gas adsorption chromatography. Plenum, New York, p 47

  23. Roubani-Kalantzopoulou F, Agelakopoulou T, Bassiotis I, Margariti S, Siokos V, Metaxa E (2008) Glob NEST J 10:183–191

    Google Scholar 

  24. Abatzoglou C, Iliopoulou E, Katsanos NA, Roubani-Kalantzopoulou F, Kalantzopoulos A (1997) J Chromatogr A 775:211–224. doi:10.1016/S0021-9673(97)00232-X

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors acknowledge the financial support under the research program PYTHAGORAS II 2005–2007. The project is co-funded by the European Social Fund (75%) and National Resources (25%).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fani Roubani-Kalantzopoulou.

Glossary

H

height of sample peaks resulting from the flow reversal (cm)

t

time (min)

M

response factor of the detector

G

calibration factor of the detector (cm/mol cm−3)

c(l′, t)

measured sampling concentration of the gas at = l′ (mol cm−3)

c * S

equilibrium adsorbed concentration of the gas adsorbate at time t (mol g−1)

a S

amount of solid material per unit length of column bed (g cm−1)

y

length coordinate along section L 2 (cm)

a y

cross sectional area of the void space in region y (cm2)

k 1

local adsorption parameter (s−1)

k −1

desorption rate constant (s−1)

k 2

surface reaction rate constant (s−1)

c y

gaseous concentration of the adsorbate as a function of time t and coordinate y along the column (mol cm−3)

D 1

diffusion coefficient of this gas adsorbate into the nitrogen carrier gas (cm2 s−1)

D 2

diffusion coefficient of this gas adsorbate into the gas phase in section y (cm2 s−1)

ε

local adsorption energies (kJ mol−1)

θ t

local adsorption isotherm (dimensionless)

c *smax

local monolayer capacity (mol g−1)

φ(ε; t)

probability distribution function for adsorption energies (mol kJ−1 min−1)

β

parameter for lateral interactions (dimensionless)

ω

lateral interaction energy (dimensionless)

z

number of neighbors for each adsorption site

R

gas constant

k

Boltzmann’s constant

h

Planck’s constant

u s (T)

partition function of the adsorbed molecule

b g (T)

partition function for rotations-vibrations in the gas phase

L 1

length of the empty section z of diffusion column (cm)

L 2

length of the filled section y of diffusion column (cm)

u

linear flow velocity of carrier gas (cm s−1)

M

molar mass of the adsorbate (kg mol−1)

n s

amount of adsorbate injected (mol)

SSA

specific surface area (cm2 g−1)

Ε

external porosity (dimensionless)

T

temperature (K)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Agelakopoulou, T., Roubani-Kalantzopoulou, F. Chromatographic Analysis of Adsorption: Chemisorption and/or Physisorption. Chroma 69, 243–255 (2009). https://doi.org/10.1365/s10337-008-0882-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1365/s10337-008-0882-1

Keywords

Navigation