Advertisement

Chromatographia

, Volume 67, Issue 7–8, pp 599–605 | Cite as

In-Groove Carbon Nanotubes Device for SPME of Aromatic Hydrocarbons

  • Edita Adomaviciute
  • Kristina Jonusaite
  • Jurgis Barkauskas
  • Vida Vickackaite
Original

Abstract

A new solid phase microextraction (SPME) fibre using carbon nanotubes as fibre coating incorporated into a groove of a stainless steel rod is suggested. It is mechanically stable and exhibits relatively high thermal stability (up to 280 °C). The coating showed especially good extraction efficiency for aromatic hydrocarbons. The extraction properties of the fibre to benzene, toluene, ethylbenzene and o-xylene were examined using both direct and headspace SPME modes coupled to gas chromatography-flame ionization detection. The parameters affecting the extraction efficiency (extraction temperature and time, salt addition, desorption temperature and time) were investigated and quality parameters were measured under the optimized conditions. For both headspace and direct SPME the calibration graphs were linear up to 100 mg L−1 (R 2 > 0.996) and detection limits ranged from 0.09 to 0.39 μg L−1. The repeatabilities were 5.9–13.3%. The proposed coating was applied for aromatic hydrocarbons determination in petrol station waste waters.

Keywords

Gas chromatography Solid phase microextraction Carbon nanotubes coating Aromatic hydrocarbons 

Notes

Acknowledgments

This work has been supported by the Lithuanian State Science and Studies Foundation.

References

  1. 1.
    Belardi R, Pawliszyn J (1989) Water pollut. Res J Can 24:179–191Google Scholar
  2. 2.
    Pawliszyn J (1997) Solid phase microextraction: theory and practice. Wiley-VCH, New York, p 268Google Scholar
  3. 3.
    Kataoka H, Lord HL, Pawliszyn J (2000) J Chromatogr A 880:35–62CrossRefGoogle Scholar
  4. 4.
    Lord H, Pawliszyn J (2000) J Chromatogr A 902:17–63CrossRefGoogle Scholar
  5. 5.
    Wu J, Pawliszyn J (2001) J Chromatogr A 909:37–52CrossRefGoogle Scholar
  6. 6.
    Wu J, Pawliszyn J (2004) Anal Chim Acta 520:257–264CrossRefGoogle Scholar
  7. 7.
    Djozan D, Pouraghi-Azar MH, Bahar S (2004) Chromatographia 59:595–599CrossRefGoogle Scholar
  8. 8.
    Minjia H, Chao T, Qunfang Z, Guibin J (2004) J Chromatogr A 1048:257–262Google Scholar
  9. 9.
    Bagheri H, Mir A, Babanezhad E (2005) Anal Chim Acta 532:89–95CrossRefGoogle Scholar
  10. 10.
    Li X, Zhong M, Xu S, Sun Ch (2006) J Chromatogr A 1135:101–108CrossRefGoogle Scholar
  11. 11.
    Ciuvasovaite V, Vickackaite V (2007) Centr Eur J Chem 5:727–738CrossRefGoogle Scholar
  12. 12.
    Farajzadeh M, Rahmani NA (2004) Anal Sci 20:1359–1362CrossRefGoogle Scholar
  13. 13.
    Liu Y, Lee ML (1997) Anal Chem 69:5001–5005CrossRefGoogle Scholar
  14. 14.
    Liu Y, Shen Y, Lee ML (1997) Anal Chem 69:190–195CrossRefGoogle Scholar
  15. 15.
    Hou JG, Ma Q, Du XZ, Deng HL, Gao JZ (2004) Talanta 62:241–246CrossRefGoogle Scholar
  16. 16.
    Du XZ, Wang YR, Tao XJ, Deng HL (2005) Anal Chim Acta 543:9–16CrossRefGoogle Scholar
  17. 17.
    Panavaite D, Padarauskas A, Vickackaite V (2006) Anal Chim Acta 571:45–50CrossRefGoogle Scholar
  18. 18.
    Giardina M, Olesik S (2001) Anal Chem 73:5841–5851CrossRefGoogle Scholar
  19. 19.
    Giardina M, Ding L, Olesik SV (2004) J Chromatogr A 1060:215–224CrossRefGoogle Scholar
  20. 20.
    Shutao W, Yan W, Hong Y, Jie Y (2006) Chromatographia 63:365–371CrossRefGoogle Scholar
  21. 21.
    Sun T, Jia J, Fang V, Wang Y (2005) Anal Chim Acta 530:33–40CrossRefGoogle Scholar
  22. 22.
    Sun T, Jia J, Zhong D, Wang Y (2006) Anal Sci 22:293–298CrossRefGoogle Scholar
  23. 23.
    Sun TH, Cao LK, Jia JP (2005) Chromatographia 61:173–179CrossRefGoogle Scholar
  24. 24.
    Gierak A, Seredych M, Bartnicki A (2006) Talanta 69:1079–1087CrossRefGoogle Scholar
  25. 25.
    Farajzadeh M, Matin AA (2002) Anal Sci 18:77–81CrossRefGoogle Scholar
  26. 26.
    Djozan D, Baheri T, Farshbaf R, Azhari S (2005) Anal Chim Acta 554:197–201CrossRefGoogle Scholar
  27. 27.
    Djozan D, Assadi Y (2004) Chromatographia 60:313–317Google Scholar
  28. 28.
    Iijima S (1991) Nature 354:56–58CrossRefGoogle Scholar
  29. 29.
    Valcarcel M, Simonet BM, Cardenas S, Suarez B (2005) Anal Bioanal Chem 382:1783–1790CrossRefGoogle Scholar
  30. 30.
    Merkoci A (2006) Microchim Acta 152:157–174CrossRefGoogle Scholar
  31. 31.
    Long RQ, Yang RT (2001) J Am Chem Soc 123:2058–2059CrossRefGoogle Scholar
  32. 32.
    Saridara C, Brukh R, Iqbal Z, Mitra S (2005) Anal Chem 77:1183–1187CrossRefGoogle Scholar
  33. 33.
    Wang JX, Jiang DQ, Gu ZY, Yan XP (2006) J Chromatogr A 1173:8–14CrossRefGoogle Scholar
  34. 34.
    Lu J, Liu J, Wei Y, Jiang K, Fan S, Liu J, Jiang G (2007) J Sep Sci 30:2138–2143CrossRefGoogle Scholar
  35. 35.
    Stan G, Cole MV (1998) Surf Sci 395:280–291CrossRefGoogle Scholar

Copyright information

© Friedr. Vieweg & Sohn Verlag/GWV Fachverlage GmbH 2008

Authors and Affiliations

  • Edita Adomaviciute
    • 1
  • Kristina Jonusaite
    • 1
  • Jurgis Barkauskas
    • 1
  • Vida Vickackaite
    • 1
  1. 1.Faculty of ChemistryVilnius UniversityVilniusLithuania

Personalised recommendations