Skip to main content
Log in

Fingerprint Analysis of Eucommia Bark by LC-DAD and LC-MS with the Aid of Chemometrics

  • Original
  • Published:
Chromatographia Aims and scope Submit manuscript

Abstract

Chromatographic fingerprints of 46 Eucommia Bark samples were obtained by liquid chromatography-diode array detector (LC-DAD). These samples were collected from eight provinces in China, with different geographical locations, and climates. Seven common LC peaks that could be used for fingerprinting this common popular traditional Chinese medicine were found, and six were identified as substituted resinols (4 compounds), geniposidic acid and chlorogenic acid by LC-MS. Principal components analysis (PCA) indicated that samples from the Sichuan, Hubei, Shanxi and Anhui—the SHSA provinces, clustered together. The other objects from the four provinces, Guizhou, Jiangxi, Gansu and Henan, were discriminated and widely scattered on the biplot in four province clusters. The SHSA provinces are geographically close together while the others are spread out. Thus, such results suggested that the composition of the Eucommia Bark samples was dependent on their geographic location and environment. In general, the basis for discrimination on the PCA biplot from the original 46 objects× 7 variables data matrix was the same as that for the SHSA subset (36 × 7 matrix). The seven marker compound loading vectors grouped into three sets: (1) three closely correlating substituted resinol compounds and chlorogenic acid; (2) the fourth resinol compound identified by the OCH3 substituent in the R4 position, and an unknown compound; and (3) the geniposidic acid, which was independent of the set 1 variables, and which negatively correlated with the set 2 ones above. These observations from the PCA biplot were supported by hierarchical cluster analysis, and indicated that Eucommia Bark preparations may be successfully compared with the use of the HPLC responses from the seven marker compounds and chemometric methods such as PCA and the complementary hierarchical cluster analysis (HCA).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Wen KC, Huang CY, Lu FL (1993) J Chromatogr A 631:241–250

    Article  CAS  Google Scholar 

  2. Drasar P, Moravcova J (2004) J Chromatogr B 812:3–21

    CAS  Google Scholar 

  3. Normile D (2004) Am J Med 116:478–485

    Article  Google Scholar 

  4. Stephen B, Richard K (2004) Am J Med 116:478–485

    Article  Google Scholar 

  5. World Health Organization (1991) Guidelines for the Assessment of Herbal Medicines, Munich, 28.6.1991. WHO, Geneva

    Google Scholar 

  6. Cheng YY, Chen MJ, Tong WD (2003) J Chem Inf Comput Sci 43:1068–1076

    Article  CAS  Google Scholar 

  7. Schoonjans V, Taylor N, Hudson BD, Massart DL (2002) J Pharmaceut Biomed Anal 28:537–548

    Article  CAS  Google Scholar 

  8. Donohue MJ, Smallwood AW, Pfaller S, Rodgers M, Shoemaker JA, (2006) J Microbiol Meth 65:380–389

    Article  CAS  Google Scholar 

  9. Liang YZ, Xie PS, Chan K (2007) J Chromatogr B 812:53–70

    Google Scholar 

  10. Ni YN, Zhang LS, Churchill J, Kokot S (2007) Talanta 72:1533–1539

    Article  CAS  Google Scholar 

  11. Cheng YY, Chen MJ, Tong WD (2003) J Chem Inf Comput Sci 43:1959–1965

    Article  CAS  Google Scholar 

  12. Shen N (2005) Shen Nong Ben Cao Jing, Gu GG (ed), Lanzhou University Press, Lanzhou

  13. Li SZ (2005) Ben Cao Gang Mu: a translation version in modern Chinese (CD-ROM edition). Inner Mongolia Press, Holhot

    Google Scholar 

  14. Chinese Pharmacopoeia Committee (2005) Chinese Pharmacopoeia. Chemical Industry Press, Beijing

    Google Scholar 

  15. Kwan CY, Chen CX, Deyama T (2004) Vasc Pharmacol 11:229–235

    Google Scholar 

  16. Kwan CY, Zhang WB, Deyama T, Nishibe S (2004) Naunyn-Schmied Arch Pharmacol 369:206–211

    Article  CAS  Google Scholar 

  17. Li YM, Metrori K (1999) Bio Pharm Bull 22:582–585

    CAS  Google Scholar 

  18. Yang J, Kato K, Noguchi K, Dairaku N, Koike T, Iijima K, Imatani A, Sekine H, Ohara S, Sasano H, Shimosegawa T (2003) Life Sci 73:3245–3256

    Article  CAS  Google Scholar 

  19. Hsieh CL, Yen GC (2000) Life Sci 66:1387–1400

    Article  CAS  Google Scholar 

  20. Hajimahmoodi M, Heyden YV, Sadeghi N, Jannat B, Oveisi MR, Shahbazian S (2005) Talanta 66:1108–1116

    Article  CAS  Google Scholar 

  21. Gu M, Su ZG, Fan OY (2006) J Liq Chromatogr Related Technol 29:1503–1514

    Article  CAS  Google Scholar 

  22. Zhou X, Peng JY, Fan GR, Wu YT (2005) J Chromatogr A 1092:216–221

    Article  CAS  Google Scholar 

  23. Gu M, Zhang SF, Su ZG, Chen Y, Fan OY (2004) J Chromatogr A 1057:133–140

    Article  CAS  Google Scholar 

  24. Gong F, Liang YZ, Xie PS, Chau FT (2004) J Chromatogr A 1029:173–183

    Article  CAS  Google Scholar 

  25. Cheng YY, Chen MJ, Wu YJ (2002) Acta Chim Sin 60:2017–2021

    CAS  Google Scholar 

  26. Marbach R, Heise M (1990) Chemom Intell Lab Sys 9:45–63

    Article  CAS  Google Scholar 

  27. Martens H, Naes T (1991) Multivariate Calibration. John Wiley and Sons, New York

    Google Scholar 

  28. Feng Y, Zhang L, Cai JN, Wang ZT, Xu L, Zhang ZX (2001) Talanta 53:1155–1162

    Article  Google Scholar 

  29. Nie L, Luo GA, Cao J, Wang YM (2004) Acta Pharm Sin 39:136–139

    Google Scholar 

  30. Brereton RG (2003) Chemometrics: Data analysis for the laboratory and chemical plant. John Wiley and Sons, New York, pp 184

    Google Scholar 

  31. Gan F, Ye RY (2006) J Chromatog A 1104:100–105

    Article  CAS  Google Scholar 

  32. Deyama T (1983) Chem Pharm Bull 31:2993–2997

    CAS  Google Scholar 

  33. Deyama T, Ikawa T, Nishibe S (1985) Chem Pharm Bull 33:3651–3657

    CAS  Google Scholar 

  34. Deyama T, Ikawa T, Kitagawa S, Nishibe S (1986) Chem Pharm Bull 34:523–527

    CAS  Google Scholar 

  35. Deyama T, Ikawa T, Kitagawa S, Nishibe S (1986) Chem Pharm Bull 34:4933–4938

    CAS  Google Scholar 

  36. Geladi P, Kowalski BR (1986) Anal Chim Acta 185:1–17

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge the financial support of this study by the National Natural Science Foundation of China (NSFC20365002 and NSFC20562009), the State Key Laboratories of Electroanalytical Chemistry of Changchun Applied Chemical Institute (SKLEAC2004-3) and the Chemo/Biosensing and Chemometrics of Hunan University (SKLCBC2005-22), the Jiangxi Provincial Natural Science Foundation (JXNSF062004), and the program for Changjiang Scholars and Innovative Research Team in Universities (IRT0540).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yongnian Ni.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ni, Y., Peng, Y. & Kokot, S. Fingerprint Analysis of Eucommia Bark by LC-DAD and LC-MS with the Aid of Chemometrics. Chroma 67, 211–217 (2008). https://doi.org/10.1365/s10337-007-0500-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1365/s10337-007-0500-7

Keywords

Navigation