, Volume 66, Issue 3–4, pp 231–235 | Cite as

Kinetics of Adsorption of Thymopentin on a Gel-Type Strong Cation-Exchange Resin

  • Xin Li
  • Lei Zhang
  • Yonghui Chang
  • Shubao Shen
  • Hanjie Ying
  • Pingkai Ouyang


The ion-exchange kinetics have been determined for adsorption of thymopentin on a gel-type sulfonated styrene–divinylbenzene resin converted to the ammonium form. Batch equilibrium and kinetic experiments were performed in chloride ion solutions of different concentration. Equilibrium data revealed isotherms were a good fit to the constant separation factor isotherm. Because of the high capacity and low cost of the resin its use for uptake of thymopentin was economically feasible. Kinetic data were compared with the predictions from the Nernst–Planck and Fick models. The intraparticle and effective diffusivity of thymopentin were obtained from these models.


Ion exchange Gel-type resin Cation exchange Thymopentin Kinetics 



Concentration of peptide in the liquid phase (mmol L−1)


Maximum peptide equilibrium concentration in the liquid phase (mmol L−1)


Effective diffusivity (cm2 s−1)


Solution diffusivity (cm2 s−1)


Faraday constant


Separation factor constant


Flux of ion (mmol cm−2 s−1)


Total ion-exchange capacity (mmol g−1 wet resin)


Concentration of ion in the resin (mmol g−1 wet resin)


Equilibrium concentration of ion in the resin (mmol g−1 wet resin)


Maximum peptide equilibrium concentration in the resin (mmol g−1 wet resin)


Special coordinate in the resin (mm)


Dimensionless special coordinate in the resin


Resin radius (mm)

\( {\Re } \)

Ideal gas constant


Dimensionless peptide concentration in liquid phase


Dimensionless peptide concentration in the resin


Dimensionless concentration of ion in the resin


Dimensionless equilibrium concentration of ion in the resin


Charge on the ion

Greek Letters


Ratio of the diffusivities of ions j and i


Dimensionless time


Electric potential



This work was supported by the National High Technology Research and Development Program of China (No. 2003AA219042) and the Doctor Fund of Nanjing University of Technology (No. BSCX200607).


  1. 1.
    Kappe CO, Dallinger D (2005) Nat Rev Drug Discovery 5:51–63CrossRefGoogle Scholar
  2. 2.
    Gonser S, Weber E, Folkers G (1999) Pharm Acta Helv 73:265–273CrossRefGoogle Scholar
  3. 3.
    Gasteiger E, Hoogland C, Gattiker A, Duvaud S, Wilkins MR, Appel RD, Bairoch A (2005) In: Walker JM (eds) Protein identification and analysis tools on the ExPASy server. Humana Press, TotowaGoogle Scholar
  4. 4.
    Wang JY, Zhu SG, Xu CF (2002) Biochemistry. Higher Education Press, BeijingGoogle Scholar
  5. 5.
    Tischio JP, Hetyei N (1982) J Chromatogr 236:237–243CrossRefGoogle Scholar
  6. 6.
    Ceccato ML, Chenu J, Méry J, Follet M, Calas B (1990) Tetrahedron Lett 31:6189–6192CrossRefGoogle Scholar
  7. 7.
    Chen Y, Yao Z, Qiu Q, Zhu K, Ma Z, Li X, Ying H (2005) Ion Exchange Adsorption 21:233–240Google Scholar
  8. 8.
    Rampold G, Lundanes E, Folkers K, Voelter W, Kalbacher H, Bliznakov E (1980) Z Naturforsch 35b:1476–1478Google Scholar
  9. 9.
    Dye SR, DeCarli JP, Carta G (1990) Ind Eng Chem Res 29:849–857CrossRefGoogle Scholar
  10. 10.
    Jones IL, Carta G (1993) Ind Eng Chem Res 32:107–117CrossRefGoogle Scholar
  11. 11.
    Jones IL, Carta G (1993) Ind Eng Chem Res 32:117–125CrossRefGoogle Scholar
  12. 12.
    Arévalo E, Rendueles M, Fernández A, Díaz M (2000) Sep Purif Technol 18:217–225CrossRefGoogle Scholar
  13. 13.
    Xu X, Luo GA, Lin BC (1995) Chem J Chin U 16:1464–1466Google Scholar
  14. 14.
    Helfferich F, Plesset MS (1958) J Chem Phys 28:418–424CrossRefGoogle Scholar
  15. 15.
    Chowdiah V, Foutch GL (1995) Ind Eng Chem Res 34:4040–4048CrossRefGoogle Scholar
  16. 16.
    Reid RC, Prausnitz JM, Poling BE (1987) The properties of gases and liquids. McGraw-Hill, New YorkGoogle Scholar
  17. 17.
    Nagai H, Carta G (2004) Sep Sci Technol 39:3691–3710CrossRefGoogle Scholar
  18. 18.
    Finlayson BA (1980) Nonlinear analysis in chemical engineering. McGraw-Hill, New YorkGoogle Scholar
  19. 19.
    Radhakrishnan K, Hindmarsh AC (1993) Description and use of LSODE, the Livermore solver for ordinary differential equations. Lawrence Livermore National Laboratory, LivermoreGoogle Scholar
  20. 20.
    Ståhlberg J (1999) J Chromatogr A 855:3–55CrossRefGoogle Scholar

Copyright information

© Friedr. Vieweg & Sohn Verlag/GWV Fachverlage GmbH 2007

Authors and Affiliations

  • Xin Li
    • 1
  • Lei Zhang
    • 1
  • Yonghui Chang
    • 1
  • Shubao Shen
    • 1
  • Hanjie Ying
    • 1
  • Pingkai Ouyang
    • 1
  1. 1.College of Life Science and Pharmaceutical EngineeringNanjing University of TechnologyNanjingChina

Personalised recommendations