, Volume 64, Issue 7–8, pp 463–467 | Cite as

Enantioseparation of Amino Acid Derivatives with a Cellulose-Based Chiral Stationary Phase

  • Wen Weng
  • Qing Le Zeng
  • Bi Xia Yao
  • Wen Shi Lin
  • Qing Hua Wang
  • Xiu Li You
Short Communication


Five structurally related amino acid derivatives were enantioseparated by HPLC with a commercially available chiral stationary phase, Chiralcel OD-H. The chromatographic experiments were performed in the normal phase mode. n-Hexane/polar alcohol was used as mobile phase. Excellent baseline enantioseparations could be obtained for all these solutes. The effects of the concentration of polar alcohol and the column temperature on the retentions and enantioseparations were studied in detail. From the van't Hoff plots the corresponding apparent thermodynamic parameters were derived. Mechanism aspects of chiral recognition were discussed based on the relationship between the thermodynamic parameters and the structures of the solutes. It was found that the substituent of the phenyl group on the residual group of the amino acid derivatives was close relevant to thermodynamic origin of enantioseparation. Much better enthalpy–entropy compensation effect was obtained by plotting the differential, rather than the original, thermodynamic parameters.


Column liquid chromatography Enantiomer separation Cellulose derivative Amino acid derivatives 



We would like to thank Education Bureau, Science and Technology Bureau of Fujian Province, China, for the financial support (JA05301 and C0540024).


  1. 1.
    Cerf C, Jorissen A (2000) Space Sci Rev 92:603–612CrossRefGoogle Scholar
  2. 2.
    Viedma C (2001) Origins Life Evol B 31:501–509CrossRefGoogle Scholar
  3. 3.
    Andini S, Castronuovo G, Elia V, Velleca F (1995) J Solut Chem 24:485–497CrossRefGoogle Scholar
  4. 4.
    Alvira E (1992) Amino Acids 2:97–102CrossRefGoogle Scholar
  5. 5.
    Kuroda Y, Kato Y, Higashioji T, Hasegawa J, Kawanami S, Takahashi M, Shiraishi N, Tanabe K, Ogoshi H (1995) J Am Chem Soc 117:10950–10958CrossRefGoogle Scholar
  6. 6.
    Haginaka J, Kagawa C (2004) Anal Bioanal Chem 378:1907–1912CrossRefGoogle Scholar
  7. 7.
    Péter A, Árki A, Tourwé D, Forró E, Fülöp F, Armstrong DW (2004) J Chromatogr A 1031:159–170CrossRefGoogle Scholar
  8. 8.
    Péter A, Török G, Armstrong DW (1998) J Chromatogr A 793:283–296CrossRefGoogle Scholar
  9. 9.
    Oberleitner WR, Maier NM, Lindner W (2002) J Chromatogr A 960:97–108CrossRefGoogle Scholar
  10. 10.
    Galli B, Gasparrini F, Misiti D, Villani C (1994) J Chromatogr A 666:77–89CrossRefGoogle Scholar
  11. 11.
    Michaud M, Jourdan E, Ravelet C, Villet A, Ravel A, Grosset C, Peyrin E (2004) Anal Chem 76:1015–1020CrossRefGoogle Scholar
  12. 12.
    Weng W, Wang QH, Yao BX, Zeng QL (2004) J Chromatogr A 1042:81–87CrossRefGoogle Scholar
  13. 13.
    Weng W, Zeng QL, Yao BX, Wang QH, Li SQ (2005) Chromatographia 61:561–566CrossRefGoogle Scholar
  14. 14.
    Lipkowitz KB (1995) J Chromatogr A 694:15–37CrossRefGoogle Scholar
  15. 15.
    Péter A, Török G, Armstrong DW, Tóth G, Tourwé D (1998) J Chromatogr A 828:177–190CrossRefGoogle Scholar
  16. 16.
    Kazusaki M, Shoda T, Kawabata H, Matsukura H (2001) J Liq Chromatogr R T 24:141–145CrossRefGoogle Scholar
  17. 17.
    Danel C, Foulon C, Park C, Yous S, Bonte JP, Vaccher C (2004) Chromatographia 59:181–188Google Scholar
  18. 18.
    Cirilli R, Del Giudice MR, Ferretti R, La Torre F (2001) J Chromatogr A 923:27–36CrossRefGoogle Scholar
  19. 19.
    Pirkle WH, Readnour RS (1991) Anal Chem 63:16–20CrossRefGoogle Scholar
  20. 20.
    Slama I, Jourdan E, Villet A, Grosset C, Ravel A, Peyrin E (2003) Chromatographia 58:399–404Google Scholar
  21. 21.
    Küsters E, Spöndlin C (1996) J Chromatogr A 737:333–337CrossRefGoogle Scholar
  22. 22.
    Cirilli R, La Torre F (1998) J Chromatogr A 818:53–60CrossRefGoogle Scholar
  23. 23.
    Fornstedt T, Sajonz P, Guiochon G (1997) J Am Chem Soc 119:1254–1264CrossRefGoogle Scholar
  24. 24.
    Cavazzini A, Kaczmarski K, Szabeiski P, Zhou DM, Liu XD, Guiochon G (2001) Anal Chem 73:5704–5715CrossRefGoogle Scholar
  25. 25.
    Fornstedt T, Götmar G, Andersson M, Guiochon G (1999) J Am Chem Soc 121:1164–1174CrossRefGoogle Scholar
  26. 26.
    André C, Guillaume YC (2003) Chromatographia 58:201–206Google Scholar
  27. 27.
    Jung M, Schmalzing D, Schurig V (1991) J Chromatogr 552:43–57CrossRefGoogle Scholar
  28. 28.
    Schurig V, Juza M (1997) J Chromatogr A 757:119–135CrossRefGoogle Scholar
  29. 29.
    Stringham RW, Blackwell JA (1997) Anal Chem 69:1414–1420CrossRefGoogle Scholar
  30. 30.
    Schurig V, Betschinger F (1992) Chem Rev 92:873–888CrossRefGoogle Scholar
  31. 31.
    Rekharsky M, Inoue Y (2000) J Am Chem Soc 122:4418–4435CrossRefGoogle Scholar
  32. 32.
    Inoue Y, Liu Y, Tong LH, Shen BJ, Jin DS (1993) J Am Chem Soc 115:10637–10644CrossRefGoogle Scholar

Copyright information

© Friedr. Vieweg & Sohn Verlag/GWV Fachverlage GmbH 2006

Authors and Affiliations

  • Wen Weng
    • 1
  • Qing Le Zeng
    • 2
  • Bi Xia Yao
    • 1
  • Wen Shi Lin
    • 1
  • Qing Hua Wang
    • 1
  • Xiu Li You
    • 1
  1. 1.Department of Chemistry and Environmental ScienceZhangzhou Teachers CollegeZhangzhouChina
  2. 2.Department of Chemistry and the Key Laboratory for Chemical Biology of Fujian ProvinceXiamen UniversityXiamenChina

Personalised recommendations