Skip to main content
Log in

Enantioseparation of Amino Acid Derivatives with a Cellulose-Based Chiral Stationary Phase

  • Short Communication
  • Published:
Chromatographia Aims and scope Submit manuscript

Abstract

Five structurally related amino acid derivatives were enantioseparated by HPLC with a commercially available chiral stationary phase, Chiralcel OD-H. The chromatographic experiments were performed in the normal phase mode. n-Hexane/polar alcohol was used as mobile phase. Excellent baseline enantioseparations could be obtained for all these solutes. The effects of the concentration of polar alcohol and the column temperature on the retentions and enantioseparations were studied in detail. From the van't Hoff plots the corresponding apparent thermodynamic parameters were derived. Mechanism aspects of chiral recognition were discussed based on the relationship between the thermodynamic parameters and the structures of the solutes. It was found that the substituent of the phenyl group on the residual group of the amino acid derivatives was close relevant to thermodynamic origin of enantioseparation. Much better enthalpy–entropy compensation effect was obtained by plotting the differential, rather than the original, thermodynamic parameters.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3.
Fig. 4.

References

  1. Cerf C, Jorissen A (2000) Space Sci Rev 92:603–612

    Article  CAS  Google Scholar 

  2. Viedma C (2001) Origins Life Evol B 31:501–509

    Article  CAS  Google Scholar 

  3. Andini S, Castronuovo G, Elia V, Velleca F (1995) J Solut Chem 24:485–497

    Article  CAS  Google Scholar 

  4. Alvira E (1992) Amino Acids 2:97–102

    Article  CAS  Google Scholar 

  5. Kuroda Y, Kato Y, Higashioji T, Hasegawa J, Kawanami S, Takahashi M, Shiraishi N, Tanabe K, Ogoshi H (1995) J Am Chem Soc 117:10950–10958

    Article  CAS  Google Scholar 

  6. Haginaka J, Kagawa C (2004) Anal Bioanal Chem 378:1907–1912

    Article  CAS  Google Scholar 

  7. Péter A, Árki A, Tourwé D, Forró E, Fülöp F, Armstrong DW (2004) J Chromatogr A 1031:159–170

    Article  Google Scholar 

  8. Péter A, Török G, Armstrong DW (1998) J Chromatogr A 793:283–296

    Article  Google Scholar 

  9. Oberleitner WR, Maier NM, Lindner W (2002) J Chromatogr A 960:97–108

    Article  CAS  Google Scholar 

  10. Galli B, Gasparrini F, Misiti D, Villani C (1994) J Chromatogr A 666:77–89

    Article  CAS  Google Scholar 

  11. Michaud M, Jourdan E, Ravelet C, Villet A, Ravel A, Grosset C, Peyrin E (2004) Anal Chem 76:1015–1020

    Article  CAS  Google Scholar 

  12. Weng W, Wang QH, Yao BX, Zeng QL (2004) J Chromatogr A 1042:81–87

    Article  CAS  Google Scholar 

  13. Weng W, Zeng QL, Yao BX, Wang QH, Li SQ (2005) Chromatographia 61:561–566

    Article  CAS  Google Scholar 

  14. Lipkowitz KB (1995) J Chromatogr A 694:15–37

    Article  CAS  Google Scholar 

  15. Péter A, Török G, Armstrong DW, Tóth G, Tourwé D (1998) J Chromatogr A 828:177–190

    Article  Google Scholar 

  16. Kazusaki M, Shoda T, Kawabata H, Matsukura H (2001) J Liq Chromatogr R T 24:141–145

    Article  CAS  Google Scholar 

  17. Danel C, Foulon C, Park C, Yous S, Bonte JP, Vaccher C (2004) Chromatographia 59:181–188

    CAS  Google Scholar 

  18. Cirilli R, Del Giudice MR, Ferretti R, La Torre F (2001) J Chromatogr A 923:27–36

    Article  CAS  Google Scholar 

  19. Pirkle WH, Readnour RS (1991) Anal Chem 63:16–20

    Article  CAS  Google Scholar 

  20. Slama I, Jourdan E, Villet A, Grosset C, Ravel A, Peyrin E (2003) Chromatographia 58:399–404

    CAS  Google Scholar 

  21. Küsters E, Spöndlin C (1996) J Chromatogr A 737:333–337

    Article  Google Scholar 

  22. Cirilli R, La Torre F (1998) J Chromatogr A 818:53–60

    Article  CAS  Google Scholar 

  23. Fornstedt T, Sajonz P, Guiochon G (1997) J Am Chem Soc 119:1254–1264

    Article  CAS  Google Scholar 

  24. Cavazzini A, Kaczmarski K, Szabeiski P, Zhou DM, Liu XD, Guiochon G (2001) Anal Chem 73:5704–5715

    Article  CAS  Google Scholar 

  25. Fornstedt T, Götmar G, Andersson M, Guiochon G (1999) J Am Chem Soc 121:1164–1174

    Article  CAS  Google Scholar 

  26. André C, Guillaume YC (2003) Chromatographia 58:201–206

    Google Scholar 

  27. Jung M, Schmalzing D, Schurig V (1991) J Chromatogr 552:43–57

    Article  CAS  Google Scholar 

  28. Schurig V, Juza M (1997) J Chromatogr A 757:119–135

    Article  CAS  Google Scholar 

  29. Stringham RW, Blackwell JA (1997) Anal Chem 69:1414–1420

    Article  CAS  Google Scholar 

  30. Schurig V, Betschinger F (1992) Chem Rev 92:873–888

    Article  CAS  Google Scholar 

  31. Rekharsky M, Inoue Y (2000) J Am Chem Soc 122:4418–4435

    Article  CAS  Google Scholar 

  32. Inoue Y, Liu Y, Tong LH, Shen BJ, Jin DS (1993) J Am Chem Soc 115:10637–10644

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We would like to thank Education Bureau, Science and Technology Bureau of Fujian Province, China, for the financial support (JA05301 and C0540024).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wen Weng.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Weng, W., Zeng, Q.L., Yao, B.X. et al. Enantioseparation of Amino Acid Derivatives with a Cellulose-Based Chiral Stationary Phase. Chroma 64, 463–467 (2006). https://doi.org/10.1365/s10337-006-0040-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1365/s10337-006-0040-6

Keywords

Navigation