Chromatographia

, Volume 63, Supplement 13, pp S29–S35 | Cite as

LC Enantioseparation of Aryl-Substituted β-Lactams Using Variable-Temperature Conditions

  • R. Berkecz
  • I. Ilisz
  • E. Forró
  • F. Fülöp
  • D. W. Armstrong
  • A. Péter
Article

Abstract

Direct reversed-phase high-performance liquid chromatographic methods were developed for the separation of enantiomers of β-lactams. The enantiomers of 7 aryl-substituted β-lactams were separated on chiral stationary phases containing the macrocyclic glycopeptide antibiotic teicoplanin (Chirobiotic T) and teicoplanin aglycone (Chirobiotic TAG) at 10-°C increments in the range 5–45 °C, using different compositions of 0.1% aqueous triethylammonium acetate (pH 4.1)/methanol (v/v) as mobile phase. The mobile phase composition and temperature were varied to achieve baseline resolutions in a single chromatographic run. The dependence of the natural logarithms of the selectivity factors ln α on the inverse of temperature, 1/T, was used to determine the thermodynamic data on the enantiomers. The thermodynamic data revealed that all the compounds in this study undergo separation via the same enthalpy-driven chiral recognition mechanism. The different methods were compared in systematic chromatographic examinations. The effects of the organic modifier, the mobile phase composition and the temperature on the separation were investigated.

Keywords

Column liquid chromatography Temperature effect Chirobiotic T and TAG columns β-Lactams 

References

  1. Achilles K, Schirmeister T, HH Otto (2000) Arch Pharm Med Chem 333:243–253CrossRefGoogle Scholar
  2. Lee HK, Chun JS, Pak CS (2001) Tetrahedron Lett 42:3483–3486CrossRefGoogle Scholar
  3. Sonnet P, Dallemagne P, Guillon J, Enguehard C, Stiebing S, Tanguy J, Bureau R, Rault S, Auvray P, Moslemi S, Sourdaine P, Séralini GE (2000) Bioorg Med Chem 8:945–955CrossRefGoogle Scholar
  4. Palomo C, Aizpurua JM, Ganboa I (1997) In: Enantioselective Synthesis of beta-Amino Acids, Juaristi E (ed) Wiley-VHC, New York, pp 279Google Scholar
  5. Fülöp F (2001) Chem Rev 101:2181–2204CrossRefGoogle Scholar
  6. Fülöp F, Forró E, Tóth GK (2004) Org Lett 6:4239–4248Google Scholar
  7. Pirkle WH, Finn JM, Schreiner JL, Hamper BC (1981) J Amer Chem Soc 103:3964–3966CrossRefGoogle Scholar
  8. Pirkle WH, Tsipouras A, Huyn MH, Hart DJ, Lee CS (1986) J Chromatogr 358:377–384CrossRefGoogle Scholar
  9. Pirkle WH, Spence PL (1998) Chirality 10:430–433CrossRefGoogle Scholar
  10. Lee CS, Chen HH (1994) J Chinese Chem Soc 41:187–190Google Scholar
  11. Okamoto Y, Hatada K (1990) Jpn Kokai Tokkyo Koho 1–9Google Scholar
  12. Okamato Y, Senoh T, Nakane H, Hatada K (1989) Chirality 1:216–222CrossRefGoogle Scholar
  13. Okamato Y, Kaida Y (1994) J Chromatogr A 666:403–419CrossRefGoogle Scholar
  14. Ficarra R, Calabro ML, Alcaro S, Tomassini S, Melardi S, Ficarra P (2000) Chromatographia 51:411–416Google Scholar
  15. Cirilli R, Del Guidice MR, Ferretti R, La Torre F (2001) J Chromatogr A 923:27–36CrossRefGoogle Scholar
  16. Péter A, Árki A, Forró E, Fülöp F, Armstrong DW (2005) Chirality 17:193–200CrossRefGoogle Scholar
  17. Huang T, Kuang C, Zhou J, Gou D (1991) Fenxi Huaxue 19:687–689Google Scholar
  18. Péter A, Török G, Fülöp F (1998) J Chromatogr Sci 36:311–317Google Scholar
  19. Yashima E, Shavattanapong P, Okamoto Y (1996) Chirality 8:446–451CrossRefGoogle Scholar
  20. Fornstedt T, Sajonz P, Guichon G (1997) J Am Chem Soc 119:1254–1264CrossRefGoogle Scholar
  21. Pirkle WH, Burke JA (1991) J Chromatogr A 557:173–185CrossRefGoogle Scholar
  22. Péter A, Török G, Armstrong DW, Tóth G, Tourwé D (1998) J Chromatogr A 828:177–190CrossRefGoogle Scholar
  23. Péter A, Vékes E, Armstrong DW (2002) J Chromatogr A 958:89–107CrossRefGoogle Scholar
  24. Palomo C, Oiarbide M, Bindi S (1998) J Org Chem 63:2469–2474CrossRefGoogle Scholar
  25. Forró E, Fülöp F (2003) Org Lett 5:1209–1212CrossRefGoogle Scholar
  26. Árki A, Tourwé D, Solymár M, Fülöp F, Armstrong DW, Péter A (2004) Chromatographia 60:43–54Google Scholar
  27. Berthod A, Chen X, Kullman JP, Armstrong DW, Gasparrini F, D'Aquarica I, Villani C, Carotti A (2000) Anal Chem 72:1767–1780CrossRefGoogle Scholar
  28. Péter A, Árki A, Tourwé D, Forró E, Fülöp F, Armstrong DW (2004) J Chromatogr A 1031:159–170CrossRefGoogle Scholar
  29. Péter A, Török R, Armstrong DW (2004) J Chromatogr A 1057:229–235CrossRefGoogle Scholar

Copyright information

© Friedr. Vieweg & Sohn/GWV Fachverlage GmbH 2006

Authors and Affiliations

  • R. Berkecz
    • 1
    • 2
  • I. Ilisz
    • 1
  • E. Forró
    • 2
  • F. Fülöp
    • 2
  • D. W. Armstrong
    • 3
  • A. Péter
    • 1
  1. 1.Department of Inorganic and Analytical ChemistryUniversity of SzegedSzegedHungary
  2. 2.Institute of Pharmaceutical ChemistryUniversity of SzegedSzegedHungary
  3. 3.Department of ChemistryIowa State UniversityAmesUSA

Personalised recommendations