, Volume 62, Issue 5–6, pp 325–329 | Cite as

A CE Method for Measuring Phototoxicity in Vitro

  • I. Hinneburg
  • S. Kempe
  • H.-H. Rüttinger
  • R.H.H. Neubert


This paper presents an experimental setup which employs capillary electrophoresis with electrochemical and UV detection to test phototoxicity of plant extracts and components in terms of oxygen consumption and generation of reactive oxygen species upon irradiation with visible light. The experimental setup was used to test the phototoxicity of different buckwheat extracts and individual plant derived substances. The buckwheat extracts showed differences in their phototoxic behavior which might be due to different phytochemical composition. Screening of individual components revealed that rutin and quercetin alone were not phototoxic, but quercetin in combination with hypericin and chlorophyll caused considerable oxygen consumption. It has been demonstrated that the apparatus is a valuable tool to screen in vitro potential phototoxic reactions of plant extracts and individual constituents.


Capillary electrophoresis Plant extracts Phototoxicity Buckwheat Quercetin/hypericin/chlorophyll mixtures Rutin 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Pinnell S (2003) J Am Acad Dermatol 48:1–19CrossRefPubMedGoogle Scholar
  2. Yamamoto Y (2001) J Dermatol Sci 27 Suppl. 1:S1–S4Google Scholar
  3. F’guyer S, Afaq F, Mukhtar H (2003) Photodermatol Photoimmunol Photomed 19:56–72CrossRefPubMedGoogle Scholar
  4. Schempp C, Schöpf E, Simon J (2002) Hautarzt 53:93–97CrossRefPubMedGoogle Scholar
  5. Ebermann R, Alth G, Kreitner M, Kubin A (1996) J Photochem Photobiol B: Biol 36:95–97Google Scholar
  6. Ferguson J (2002) Photodermatol Photoimmunol Photomed 18:262–9CrossRefPubMedGoogle Scholar
  7. Podhaisky H, Riemschneider S, Wohlrab W (2002) Pharmazie 57:30–33PubMedGoogle Scholar
  8. Wilhelm K, Biel S, Siegers C (2001) Phytomedicine 8:306–309CrossRefPubMedGoogle Scholar
  9. Jones P, King A, Earl L, Lawrence R (2003) Toxicol In Vitro 17:471–80CrossRefPubMedGoogle Scholar
  10. Radschuweit A, Rüttinger HH, Nuhn P (2001) J Chromatogr A 937:127–134CrossRefPubMedGoogle Scholar
  11. Theurer C, Gruetzner K, Freeman S, Koetter U (1997) Pharm Pharmacol Lett 7:113–115Google Scholar
  12. Samel D, Donella-Deana A, de Witte P (1996) Planta Med 62:106–110PubMedGoogle Scholar
  13. Rozanowska M, Ciszewska J, Korytowski W, Sarna T (1995) J Photochem Photobiol B: Biol 29:71–77Google Scholar
  14. Rice-Evans C, Miller N, Paganga G (1996) Free Radical Biol Med 20:933–956CrossRefGoogle Scholar
  15. Milde J, Elstner E, Grassmann J (2004) Phytomedicine 11:105–13CrossRefPubMedGoogle Scholar
  16. Brockmann H, Weber E, Pampus G (1952) Liebigs Ann Chem 575:53–83Google Scholar
  17. Hinneburg I, Neubert RHH (2005) J Agric Food Chem 53:3–7CrossRefPubMedGoogle Scholar
  18. Dechene E (1951) J Americ Pharm Assoc 40:495–497Google Scholar
  19. Nishie K, Waiss AC, Keyl AC (1968) Photochem Photobiol 8:223–229Google Scholar
  20. Takahama U (1985) Photochem Photobiol 42:89–91PubMedGoogle Scholar
  21. Heijnen C, Haenen G, Oostveen R, Stalpers E, Bast A (2002) Free Rad Res 36:575–581CrossRefGoogle Scholar

Copyright information

© Friedr. Vieweg & Sohn/GWV Fachverlage GmbH 2005

Authors and Affiliations

  • I. Hinneburg
    • 1
  • S. Kempe
    • 1
  • H.-H. Rüttinger
    • 2
  • R.H.H. Neubert
    • 1
  1. 1.Institute of Pharmaceutics and Biopharmaceutics, Department of PharmacyMartin-Luther-University Halle-WittenbergHalleGermany
  2. 2.Institute of Pharmaceutical Chemistry, Department of PharmacyMartin-Luther-University Halle-WittenbergHalleGermany

Personalised recommendations