Advertisement

Chromatographia

, Volume 62, Issue 3–4, pp 215–219 | Cite as

Determination of Diazepam in Human Plasma by Solid-Phase Microextraction and Capillary Gas Chromatography-Mass Spectrometry

  • M. H. De. Oliveira
  • M. E. C. Queiroz
  • D. Carvalho
  • S. M. Silva
  • F. M. Lancas
Short Communication

Abstract

A simple, sensitive, and reproducible solid-phase microextraction and capillary gas chromatography-mass spectrometry (SPME-GC-MS) method for determination of diazepam in human plasma is described. The optimum conditions for the SPME procedure were as following: direct extraction mode with a polydimethylsiloxane (PDMS) fiber (100 μm film thickness), 250 μL of sample plasma matrix modified with a solution containing sodium chloride (10% weight by volume) and 4.25 mL of a phosphate buffer solution (0.1mol L−1, pH 6.9), extraction temperature 55°C under a magnetic stirring rate of 2500 rpm for 30 min, followed by the drug thermal desorption (250°C) in a GC injection port for 10 min. The limit of quantification of diazepam in plasma was 10.0 ng mL−1, with a coefficient of variation lower than 14.0% and linearity from 10.0 to 1000.0 ng mL−1, which allows diazepam analyses from sub to therapeutic levels.

Keywords

Gas chromatography-mass spectrometry Solid-phase microextraction Diazepam in human plasma 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. File SE, Pellow S (1990) Behavioral pharmacology of minor tranquilizers. In: Balfour DJK (ed) Psychotropic Drugs of Abuse. Pergamon Press, New York, pp.147–172Google Scholar
  2. Ellenhorn MJ (1997) Benzodiazepines. In: Ellenhorn’s Medical Toxicology, 2nd edn, Willians & Wilkins, Baltimore, pp. 687–695Google Scholar
  3. Pawliszyn J (1997) In Solid Phase Microextraction: Theory and Practice, Wiley-VCH, New YorkGoogle Scholar
  4. Pawliszyn J (1999) In Applications of Solid Phase Microextraction, Royal Society of Chemistry, LondonGoogle Scholar
  5. Ulrich S (2000) J Chromatogr A 902:167–194CrossRefPubMedGoogle Scholar
  6. Furton KG, Wang J, Hsu YL, Walton J, Almirall JR (2000) J Chromatogr Sci 38:297–306PubMedGoogle Scholar
  7. Theodoridis G, Koster EHM, Jong GJ (2000) J Chromatogr B 745:49–82Google Scholar
  8. Snow NH (2000) J Chromatogr A 885:445–455CrossRefPubMedGoogle Scholar
  9. Walles M, Mullett WM, Pawliszyn J (2004) J Chromatogr A 1025:85–92CrossRefPubMedGoogle Scholar
  10. Jinno K, Taniguchi M, Hayashida M (1998) J Pharm Biomed Anal 17:1081–1091CrossRefPubMedGoogle Scholar
  11. Yuan H, Pawliszyn J (2001) Anal Chem 73:4410–4416CrossRefPubMedGoogle Scholar
  12. Krogh M, Grefslie H, Rasmussen K (1997) J Chromatogr B 689:357–362Google Scholar
  13. Luo Y, Pan L, Pawliszyn J (1998) J Microcol Sep 10:193–201CrossRefGoogle Scholar
  14. Queiroz MEC, Lanças FM (2004) LCGC North America 22:970–980Google Scholar
  15. Queiroz MEC, Carvalho D, Lanças FM (2002) J Chromatogr Sci 40:219–223PubMedGoogle Scholar

Copyright information

© Friedr. Vieweg & Sohn/GWV Fachverlage GmbH 2005

Authors and Affiliations

  • M. H. De. Oliveira
    • 1
  • M. E. C. Queiroz
    • 2
  • D. Carvalho
    • 3
  • S. M. Silva
    • 3
  • F. M. Lancas
    • 1
  1. 1.Instituto de Química de São CarlosUniversidade de São PauloSão CarlosBrasil
  2. 2.Departamento de Química, Faculdade de Filosofia Ciěncias e Letras de Ribeirão PretoUniversidade de São PauloRibeirão PretoBrasil
  3. 3.Curso de Ciências FarmacêuticasUniversidade de Ribeirão PretoRibeirão PretoBrasil

Personalised recommendations