, Volume 61, Issue 11–12, pp 539–547 | Cite as

Oil-In-Water Microemulsion LC Determination of Pharmaceuticals Using Gradient Elution

  • A. Marsh
  • B. J. Clark
  • K. D. Altria


Efficient and novel oil-in-water microemulsion HPLC (MELC) separations of a range of solutes have been performed on conventional reversed-phase HPLC columns using gradient elution. This work follows previous successful separations using isocratic oil-in-water MELC [1]. It was found that by changing certain variables, peak-peak resolution, separation selectivity, efficiency and solute retention could be manipulated. The method was compatible with very low UV detection wavelengths. A robust separation method was developed for the quantitative analysis of 2 steroids in a combination-inhaled product for asthma. The method offered similar chromatography and run time when compared with conventional HPLC modes, thus demonstrating its potential for routine use. Stability-indicating methods were developed to separate synthetic and degradative impurities from the main component peaks in 4 pharmaceutical products. The methods offered quicker analysis times and equivalent selectivity to conventional HPLC modes. In developing the separations the effect on the chromatography of varying the operating parameters was studied.


Column liquid chromatography Micellar liquid chromatography Microemulsion liquid chromatography Pharmaceutical analysis Selectivity investigation 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Marsh A, Altria KD, Clark BJ (2004) Chromatographia 59:531–542CrossRefGoogle Scholar
  2. Malenovic A, Ivanovic D, Medenica M, Jancic B, Markovic S (2004) J Sep Sci 27:1087–1092Google Scholar
  3. El Sherbiny DTM, El Ashry SM, Mustafa MA, El Emam AA, Hansen SH (2003) J Sep Sci 26:503–509CrossRefGoogle Scholar
  4. Berthod A, De Carvalho M (1992) Anal Chem 64:2267–2272CrossRefGoogle Scholar
  5. Berthod A, Laserna JJ, Carretero I (1992) J Liq Chromatogr 15:3115–3127Google Scholar
  6. Kulikov AU, Loginova LP, Samokhina LV (2003) Chromatographia 57:463–470Google Scholar
  7. Bryant SM, Altria KD (2004) J Sep Sci 27:1498–1502Google Scholar
  8. Khaledi MG (1997) J Chromatogr A 780:3–40CrossRefGoogle Scholar
  9. Berthod A, Garcia-Alvarez-Coque C (2000) Micellar Liquid Chromatography. Marcel Dekker IncGoogle Scholar
  10. Lopez-Grio S, Garcia-Alvarez-Coque S, Hinze WL, Quina FH, Bertod A (2000) Anal Chem 72:4826–4835CrossRefPubMedGoogle Scholar
  11. Torres-Lapasio JR, Massart DL, Baeza-Baeza JL, Garcia-Alvarez-Coque C (2000) Chromatographia 51:101–110Google Scholar
  12. Gil-Augusti M, Torres-Lapasio JR, Garcia-Alvarez-Coque MC, Estere-Romero J (2000) J Chromatogr A 866:35–49CrossRefPubMedGoogle Scholar
  13. Berthod A (1997) J Chromatogr A 780:191–206CrossRefGoogle Scholar
  14. Berthod A (1986) Adv Colloid Interface Sci 25:3–40Google Scholar
  15. Madamba-Tan LS, Strasters JK, Khaledi MG (1994) J Chromatogr A 683:321–334CrossRefPubMedGoogle Scholar
  16. Madamba-Tan LS, Strasters JK, Khaledi MG (1994) J Chromatogr A 683:335–345CrossRefPubMedGoogle Scholar
  17. Eastoe J, Chatfield S (1994) Langmuir, 10:1650–1653Google Scholar
  18. Budavari S (ed.) (2001) The Merck Index, 13th ed. Whitehouse stationGoogle Scholar
  19. Klampfl CW (2003) Electrophoresis 24:1537–1543CrossRefPubMedGoogle Scholar
  20. Harang V, Eriksson J, Sanger-van-Griend CE, Jacobsson SP, Westerlund D (2004) Electrophoresis 25:80–93CrossRefPubMedGoogle Scholar
  21. Altria KD, Clark BJ, Mahuzier PE (2000) Chromatographia 52:758–768Google Scholar
  22. ICH guidelines Q2A, Text on Validation of Analytical Procedures 1995, www.ich.orgGoogle Scholar

Copyright information

© Friedr. Vieweg & Sohn/GWV Fachverlage GmbH 2005

Authors and Affiliations

  1. 1.GlaxoSmithKline Research & DevelopmentNew Frontiers Science Park SouthEssexUK
  2. 2.Institute of Pharmaceutical Innovation, School of Life SciencesUniversity of BradfordUK

Personalised recommendations