, Volume 61, Issue 3–4, pp 167–171 | Cite as

Determination of Vapor Pressures Using Extrapolation of Adjusted Retention Times



Vapor pressure is one of the fundamental properties which govern the distribution of organic compounds in the environment. This property is estimated for five series of homologous substituted alkanes of the type H—(CH2)n—Y, where Y denotes Cl, Br, CHO, COOCH3, OCOCH3 and n varies from 5 to 14 using extrapolation of adjusted retention times to 25 °C. The results are compared with those obtained by using indirect methods for 40 compounds and a significant improvement is obtained. Indeed, the absolute average error percentage for the same series does not exceed 2.6%


Gas chromatography Vapor pressure determination Ambient temperature (25 °C) Substituted alkanes 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Bidleman TF (1984) Anal Chem 56:2490Google Scholar
  2. Foreman WT, Bidleman TF (1985) J Chromatogr 330:203Google Scholar
  3. Spencer WF, Farmer WJ, Cliath MM (1973) Residue Rev 49:1Google Scholar
  4. Yamazaki H, Kuwata K, Miyamoto H (1982) Environ Sci Technol 16:189Google Scholar
  5. Keller CD, Bidleman TF (1984) Atmos Environ Chem 18:837Google Scholar
  6. Bidleman TF, Renberg L (1985) Chemosphere 14:1475Google Scholar
  7. Site AD (1997) J Phys Chem Ref Data 26:157CrossRefGoogle Scholar
  8. Fawler L, Trump WN, Volgler CE (1968) J Chem Eng Data 13:209Google Scholar
  9. Grayson BT, Fosbraey (1982) Pest Sci 13:269Google Scholar
  10. Koutek B, Cvačka J, Streinz L, Vrkočová P, Doubský J, šimonova H, Feltl L, Svoboda V (2001) J Chromatogr 923:137Google Scholar
  11. Hinckley DA, Bidleman TF, Foreman WT (1990) J Chem Eng Data 35:232Google Scholar
  12. Spieksma W, Luijk R, Govers HAJ (1994) J Chromatogr 672:141Google Scholar
  13. Letcher TM, Naicker PK (2004) J Chromatogr 1037:141Google Scholar
  14. Novak J (1987) In: Chromatographic theory and basic principles, Jonsson JA (eds) Marcel Dekker, New York, pp. 103–156Google Scholar
  15. Westcott JW, Bidleman TF (1981) J Chromatogr 210:331Google Scholar
  16. Eitzerand BD, Hites RA (1988) Environ Sci Technol 22:1362Google Scholar
  17. Hamilton DJ (1980) J Chromatogr 195:75Google Scholar
  18. Gerbino TC, Castello G (1991) J Chromatogr 537:305Google Scholar
  19. Wong A, Lei YD, Alaee M, Wania F (2001) J Chem Eng Data 46:239Google Scholar
  20. Sjödin A, Jakobsson E, Kierkegaard A, Marsh G, Sellstron U (1998) J Chromatogr 822:83Google Scholar
  21. Lei YD, Wania F, Shiu WY (2001) J Chem Eng Data 46:239Google Scholar
  22. Donovan SF (1996) J Chromatogr 749:123Google Scholar
  23. Gerbino TC, Castello G (1995) J Chromatogr 699:161Google Scholar
  24. Said AS (1987) In: Proceedings of 8th International Symposium on capillary chromatography, Sandra P (eds) Riva del Garda, Huething, Heidelberg, pp. 85Google Scholar
  25. Nichols G, Orf J, Reiter SM, Chickos J, Gokel GW (2000) Termochimica Acta 346:15Google Scholar

Copyright information

© Friedr. Vieweg&Sohn/GWV Fachverlage GmbH 2005

Authors and Affiliations

  1. 1.Laboratoire d’analyses industrielles et génie des matériauxUniversité de GuelmaGuelmaAlgeria

Personalised recommendations