, Volume 60, Issue 7–8, pp 385–390 | Cite as

Voltammetric Detector for Liquid Chromatography: Determination of Triclosan in Rabbit Urine and Serum



A flow-electrolytic cell containing a strand of carbon fibers has been designed and characterized for use in a voltammetric detector for high-performance liquid chromatography. The detector was used for determination of triclosan (2,4,4-trichloro-2-hydroxydiphenyl ether) in rabbit serum and urine. Analysis of rabbit serum and urine 1 day and 1 to 5 days, respectively, after ingestion of oral triclosan revealed that the concentration of triclosan was higher than for control serum and urine. The concentration reached maximum levels after 6 h and 34 h or 44 h in serum and urine, respectively. When triclosan was determined in rabbit samples with the method proposed the results obtained were comparable with those obtained by high-performance liquid chromatography with ultraviolet detection.


Column liquid chromatography Voltammetric detector Carbon-fiber electrode Rabbit urine and serum Triclosan 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



Financial support of this work by National Science Council of the Republic of China (no. NSC 90-2113-M-041-006) is gratefully acknowledged.


  1. Patonay G (1992) HPLC Detection Newer Methods, Wiley-VCH, p 98Google Scholar
  2. Wang J (1999) Electroanalytical Techniques in Clinical Chemistry and Laboratory Medicine, Wiley-VCH, p114Google Scholar
  3. Parves H, Bastart-Malsory M, Parvez S, Nagatsu T, Garpentier G (1987) Electrochemical Detection in Medicine and Chemistry, VNU Science Press, p 142Google Scholar
  4. Besenhard JO, Schulte A, Schur K, Jannakoudakis PD (1991) Preparation of Voltammetric and Potentiometric Carbon Fiber Microelectrodes, NATO ASI Ser, Ser E 189–204Google Scholar
  5. Fernandez ALS, Calzon JAG, Garcia AC, Blanco PT (1991) Electroanalysis 43:413–417Google Scholar
  6. Hernandez P, Sanchez I, Paton F, Hernandez L (1998) Talanta 46:985–991CrossRefGoogle Scholar
  7. Alarnes-Varela G, Suarez-Fernandez AL, Costa-Garcia A (1998) Electrochim Acta 44:763–772CrossRefGoogle Scholar
  8. Wang JS, Cai XA, Fernandes JR, Grant DH, Ozsoz MJ (1998) Electroanal Chem 441:167–172CrossRefGoogle Scholar
  9. Suarez-Fernandez AL, Alarnes-Varela G, Costa-Garcia A (1999) Electrochim Acta 44:4489–4498CrossRefGoogle Scholar
  10. Cavalheiro ETG, Brajter-Toth A (1999) J Pharm Biomed Anal 19:217–230CrossRefPubMedGoogle Scholar
  11. Logman MJ, Budygain EA, Gainetdinov RR, Mark RJ (2000) Neurosci Methods 95:95–102CrossRefGoogle Scholar
  12. Gonzalez de la Huabra MJ, Hernandez P, Ballesteros Y, Hernandez L (2001) Talanta 54:1077–1085CrossRefGoogle Scholar
  13. Jenkins S, Addy M, Nowcombe RJ (1993) J Clin Periodontol 20:609–612PubMedGoogle Scholar
  14. Kanetoshi A, Katsura E, Ogawa H, Uhyama T, Kaneshima H, Miura T (1992) Arch Environ Contam Toxicol 23:91–98PubMedGoogle Scholar
  15. Aguera A, Fernandes-Alba AR, Piedra L, Mezcua M, Gomez MJ (2003) Anal Chim Acta 480:193–205CrossRefGoogle Scholar
  16. Pemberton RM, Hart JP (1999) Anal Chim Acta 390:107–115CrossRefGoogle Scholar
  17. Safavi A, Maleki N, Shahbaazi HR (2003) Anal Chim Acta 494:225–233CrossRefGoogle Scholar
  18. Akiok K, Hiroshi O, Eijik, Toyo O, Hiroyasuk K (1998) Arch Environ Contam Toxicol 17:637–644Google Scholar

Copyright information

© Friedr. Vieweg&Sohn/GWV Fachverlage GmbH 2004

Authors and Affiliations

  1. 1.Department of Applied ChemistryChia Nan University of Pharmacy and ScienceTaiwanROC

Personalised recommendations