, Volume 60, Issue 7–8, pp 425–431 | Cite as

Adsorption Isotherms and Sites Distribution of Caffeic Acid – Imprinted Polymer Monolith from Frontal Analysis

  • Hui Li
  • Lihua Nie
  • Shouzhuo Yao


The frontal analysis technique was successfully applied to the determination of the adsorption isotherms of the imprinted polymer monolith prepared by a in-situ synthesis method using caffeic acid as the template, and methacrylic acid, ethyl glycol dimethacrylate and2,2’-azobisisobutyronitrile as the functional monomer, cross-linker and initiator, respectively, with tetrahydrofuran-iso-octane (2:1, ν/ν) as a porogen. Adsorption isotherms of the monolith were measured at 25, 45 and 60°C using tetrahydrofuran containing 1, 3 and 5% acetic acid as mobile phase, respectively. The adsorption capacity of the monolith for the template was found to be much stronger than the other structurally related compounds. The column temperature significantly affected the adsorption capacity of the monolith. The acetic acid in the mobile phase showed some influence on the adsorption of the template on the stationary phase. The adsorption behavior of the template on the monolith is best described by the Freundlich isotherm. From the best coefficients of the Bi-Langmuir fit, the binding constant and saturation capacities of the molecularly imprinted polymer monolith were obtained.


Column liquid chromatography Imprinted polymer monolith Frontal analysis Adsorption isotherms Caffeic acid 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



Financial supports from China NSF, China MST and Hunan Provincial Department of Science & Technology were acknowledged.


  1. Sellergren B (2001) J Chromatogr A 906:227–252CrossRefPubMedGoogle Scholar
  2. Owens PK, Karlsson L (1999) Trends Anal Chem 18:146–154CrossRefGoogle Scholar
  3. Takeuchi T, Haginaka J (1999) J Chromatogr B 728:1–20CrossRefGoogle Scholar
  4. Ramström O, Ansell RJ (1998) Chirality 10:195–209CrossRefGoogle Scholar
  5. Xie JC, Zhu LL, Luo HP, Zhu L, Li CX, Xu XJ (2001) J Chromatogr A 934:1–11CrossRefPubMedGoogle Scholar
  6. Baggiani C, Giraudi G, Giovannoli C, Trotta F, Vanni A (2000) J Chromatogr A 883:119–126CrossRefPubMedGoogle Scholar
  7. Kempe M (1996) Anal Chem 68:1948–1953CrossRefPubMedGoogle Scholar
  8. Burow M, Minoura N (1996) Biochem Biophys Res Commun 227:419–422CrossRefPubMedGoogle Scholar
  9. Petcu M, Cooney J, Cook C, Lauren D, Schaare P, Holland P (2001) Anal Chim Acta 435:49–55CrossRefGoogle Scholar
  10. Svec F, Frechet JMJ (1992) Anal Chem 64:820–822Google Scholar
  11. Matsui J, Kato T, Takeuchi T, Suzuki M, Yokoyama K, Tamiya E, Karube I (1993) Anal Chem 65:2223–2224Google Scholar
  12. Svec F, Frechet JMJ (1996) Science 273:205–211PubMedGoogle Scholar
  13. Matsui J, Nicholls IA, Takeuchi T (1998) Anal Chim Acta 365:89–93CrossRefGoogle Scholar
  14. Schweiz L, Andersson LI, Nilsson S (2001) Anal Chim Acta 435:43–47CrossRefGoogle Scholar
  15. Takeuchi T, Matsui J (2000) J HighResolut Chromatogr 23:44–46CrossRefGoogle Scholar
  16. Lanza F, Sellergren B, (1999) Anal Chem 71:2092–2096CrossRefGoogle Scholar
  17. Huang XD, Zou HF, Chen XM, Luo QZ, Kong L (2003) J Chromatogr A984:273–282CrossRefGoogle Scholar
  18. Zhang ML, Xie JP, Zhou Q, Chen GQ, Liu Z (2003) J Chromatogr A 984:173–183CrossRefPubMedGoogle Scholar
  19. Yamamura HL, Enna SJ, Kuhar MJ (1985) Neurotransmitter Receptor Binding, Raven press, New YorkGoogle Scholar
  20. Matsui J, Miyoshi Y, Doblhoff-Dier O, Takeuchi T (1995) Anal Chem 67:4404–4408Google Scholar
  21. Bogacheva EK, Kiselev AV, Yu AV, Eltekov A (1964) Kollid Zh 26:456–459Google Scholar
  22. Sajonz P, Guan-Sajonz H, Zhong G, Guiochon G (1997) Biotechnol Progr 13:170–178CrossRefGoogle Scholar
  23. Mayes AG, Mosbach K (1997) Trends Anal Chem 16:321–332CrossRefGoogle Scholar
  24. Sellergren B, Shea KJ (1995) J Chromatogr A 690:29–39CrossRefGoogle Scholar
  25. Szabelski P, Kaczmarski K, Cavazzini A, Chen YB, Sellergren B, Guiochon G (2002) J Chromatogr A 964:99–111CrossRefPubMedGoogle Scholar
  26. Guan-Sajonz H, Sajonz P, Zhong G, Guiochon G (1996) Biotechnol Progr 12:380–386CrossRefGoogle Scholar
  27. Huang JX, Horvath C (1987) J Chromatogr 406:275–284CrossRefPubMedGoogle Scholar
  28. Guiochon G, Golshan-Shirazi S, Katti A (1994) Foundamentals of preparative and nonlinear chromatography, Academic Press, New WorkGoogle Scholar
  29. Aris R, Amundson NR (1973) Mathematical method in chemical engineering, New York, Prentice-Hall, Englewood CliffsGoogle Scholar
  30. Jaroniec M, Madey R (1988) Physical adsorption on heterogeneous solids, Elsevier, AmsterdamGoogle Scholar
  31. Rudzinske W, Everett, DH (1992) Adsorption of gases on the heterogeneous surface, Academic Press, New YorkGoogle Scholar
  32. Sajonz P, Kele M, Zhong G, Sellergren B, Guiochon G (1998) J Chromatogr A 810:1–17CrossRefGoogle Scholar
  33. Sajonz P, Zhong G, Guiochon G (1996)J Chromatogr A 731:1–25CrossRefGoogle Scholar
  34. Zhong TL, Liu F, Chen W, Wang J, Li K (2001) Anal Chim Acta 450:53–61CrossRefGoogle Scholar
  35. Sellergren B (1994) J Chromatogr A 673:133–141CrossRefGoogle Scholar
  36. Mena ML, Martinez-Ruiz P, Reviejo AJ, Pingarron JM (2002) Anal Chim Acta 451:297–304CrossRefGoogle Scholar

Copyright information

© Friedr. Vieweg&Sohn/GWV Fachverlage GmbH 2004

Authors and Affiliations

  1. 1.State Key Laboratory of Chemo/Biological Sensing & ChemometricsHunan UniversityChangshaP.R. China
  2. 2.College of Chemistry and Chemical EngineeringJishou UniversityHunan JishouP.R. China

Personalised recommendations