Advertisement

Chromatographia

, Volume 59, Issue 9–10, pp 579–589 | Cite as

Theoretical Aspects of Gradient Reversed-Phase High Performance Liquid Chromatography of Styrene – Butylacrylate Block Copolymers

  • L. Kolářová
  • P. Jandera
  • E. C. Vonk
  • H. A. Claessens
Article

Abstract

Butylacrylate – styrene co-polymers prepared by atom transfer radical polymeratization were separated on an octadecyl silica column by gradient elution with tetrahydrofuran in water, up to the molar masses 10,000. In reversed-phase high performance liquid chromatography (RP-HPLC), the retention of macromolecules is affected very significantly even by change of a few tenths of per cent of the organic solvent in the aqueous-organic mobile phase. Therefore, gradient elution was used for the determination of the parameters of the equations describing the effects of the mobile phase on the retention behaviour of synthetic polymers. The retention parameters of homopolymers and copolymers were calculated from the gradient data using two retention models. The retention behaviour of the copolymers was described using the experimental gradient retention data for homopolymers.

Keywords

Column liquid chromatography Gradient elution Styrene-butylacrylate block copolymers 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Moad G, Solomon DH (1995) In: The Chemistry of Free Radical Polymerization, Elsevier Science Ltd., OxfordGoogle Scholar
  2. Kato M, Kamigaito M, Sawamoto M, Higashimura T (1995) Macromolecules 28:1721–1723Google Scholar
  3. Wang JS, Matyjaszewski K (1995) Macromolecules 28:7901–7910Google Scholar
  4. Chambard G (2000) In: Control of Monomer Sequence Distribution, Ph.D. Thesis, Eindhoven University of Technology, Eindhoven, The NetherlandsGoogle Scholar
  5. Crompton TR (1984) In: The Analysis of Plastics, Pergamon Press, OxfordGoogle Scholar
  6. Crompton TR (1989) In: Analysis of Polymers, an Introduction, Pergamon Press, OxfordGoogle Scholar
  7. Yau WW, Kirkland JJ, Bly DD (1978) In: Modern Size Exclusion Chromatography, John Wiley, New YorkGoogle Scholar
  8. Hunt BJ, Holding SR (1989) In: Size Exclusion Chromatography, Blackie and Son Ltd., LondonGoogle Scholar
  9. Stegeman G, Van Asten AC, Kraak JC, Poppe H, Tijssen R (1994) Anal. Chem. 66:1147–1160Google Scholar
  10. Jandera P, Holčapek M, Kolářová L (2000) J Chromatogr 869:65–84CrossRefGoogle Scholar
  11. Entelis SG, Evreinov VV, Gorshkov AV (1986) Adv Polym Sci 76:129–175Google Scholar
  12. Zimina TM, Kever JJ, Melenevskaya EY, Zgonnik VN, Belen’kii, BJ (1991) Polym Sci 33:1250–1254CrossRefGoogle Scholar
  13. Jandera P (2002) J Liquid Chromatogr 25:2901–2931CrossRefGoogle Scholar
  14. Teramachi S, Hasegawa A, Shima Y, Akatsuka M, Nakajima M (1979) Macromolecules 12:992–996Google Scholar
  15. Van der Maeden, FPB; Biemond, MEF; Janssen, PCGM (1978) J. Chromatogr. 149:539–552Google Scholar
  16. Glöckner G (1987) In: Polymer Characterization by Liquid Chromatography, Elsevier, AmsterdamGoogle Scholar
  17. Glöckner G (1991) In: Gradient HPLC of Copolymers and Chromatographic Cross-fractionation, Springer Verlag, Berlin-Heidelberg-New YorkGoogle Scholar
  18. Mori S, Uno Y (1987) J Appl Polym Sci 34:2689–2699CrossRefGoogle Scholar
  19. Mori S (1990) Anal Chem 62:1902–1904Google Scholar
  20. Stadalius MA, Quarry MA, Mourey TH, Snyder LR (1986) J Chromatogr 358:17–37CrossRefGoogle Scholar
  21. Quarry MA, Stadalius MA, Mourey TH, Snyder LR (1986) J Chromatogr 358:1–16CrossRefGoogle Scholar
  22. Jandera P, Urbánek J, Prokeš B, Churáček J (1990) J Chromatogr A 504:297–318CrossRefGoogle Scholar
  23. Jandera P (1988) J Chromatogr 449:361–389CrossRefGoogle Scholar
  24. Jandera P, Holčapek M, Kolářová L (2001) Int. J Polym Anal Charact 6:261–294Google Scholar
  25. Staal WJ, Cools PJCH, Van Herk AM, German AL (1994) J Liq Chromatogr 17:3191–3199Google Scholar
  26. Cools PJCH, Van Herk AM, German AL, Staal WJ (1994) J Liq Chromatogr 17:3133–3143Google Scholar
  27. Staal WJ (1996) In: Gradient Polymer Elution Chromatography, Ph.D. Thesis, Eindhoven University of Technology, Eindhoven, The Netherlands.Google Scholar
  28. Klumperman B, Cools PJCH, Philipsen HJA, Staal WJ (1996) Macromol. Symp 110:1–13Google Scholar
  29. Philipsen HJA, Klumperman B, German AL (1996) J Chromatogr A. 746:211–224Google Scholar
  30. Philipsen HJA, De Cooker MR, Claessens HA, Klumperman B, German AL (1997) J Chromatogr A 761:147–162CrossRefGoogle Scholar
  31. Philipsen HJA (1998) In: Mechanisms of Gradient Polymer Elution Chromatography and its Application to (Co)Polyesters, Ph.D. Thesis, Eindhoven University of Technology, Eindhoven, The NetherlandsGoogle Scholar
  32. Schoenmakers P, Fitzpatrick F, Grothey R (2002) J Chromatogr A 965:93–107CrossRefPubMedGoogle Scholar
  33. Gorshkov AV, Much H, Becker H, Pasch H, Evreinov EE, Entelis SG (1990) J Chromatogr 523:91–102CrossRefGoogle Scholar
  34. Philipsen HJA, Klumperman B, Van Herk AM, German AL (1996) J Chromatogr 727:13–25Google Scholar
  35. Snyder LR, Stadalius MA (1986) In: High Performance Liquid Chromatography: Advances and Perspectives, Horvath C (ed) Academic press, London, Vol. 4, pp. 195–312Google Scholar
  36. Snyder LR, Dolan JW (1998) Advances in Chromatography 38:115–187Google Scholar
  37. 37Jandera P, Churáček J, Svoboda L (1979) J Chromatogr 174:35–50CrossRefGoogle Scholar
  38. Jandera P, Churáček J (1974) J Chromatogr 91:223–235CrossRefGoogle Scholar
  39. Brandrup S, Immergut EH (1975) In: Polymer Handbook, Wiley-Interscience, New YorkGoogle Scholar
  40. Quarry MA, Grob RL, Snyder LR (1986) Anal Chem 58:907–917Google Scholar
  41. Jandera P, Churáček J (1985) In: Gradient Elution in Column Liquid Chromatography – Theory and Practice, Elsevier, AmsterdamGoogle Scholar
  42. 42Jandera P (1999) J Chromatogr 845:133–144CrossRefGoogle Scholar

Copyright information

© Friedr. Vieweg&Sohn Verlagsgesellschaft mbH 2004

Authors and Affiliations

  • L. Kolářová
    • 1
  • P. Jandera
    • 1
  • E. C. Vonk
    • 2
  • H. A. Claessens
    • 2
  1. 1.Department of Analytical ChemistryUniversity of PardubicePardubice Czech Republic
  2. 2.Laboratory of Polymer ChemistryDepartment of Chemical Engineering & ChemistryMB EindhovenThe Netherlands

Personalised recommendations