Chromatographia

, Volume 59, Issue 7–8, pp 487–492 | Cite as

Novel Strategy in Slalom Chromatography for Studying Both the Protein Reptation Mechanism and the Compacting Agent Effect to Improve Oligonucleotide Separation

Article
  • 48 Downloads

Abstract

Slalom Chromatography (SC) is a chromatographic mode for separate flexible biological molecules. In this technique, the reptation of the DNA fragments through the column packing follows the flow direction and its like a snake edging is way into long grass. A novel equation (Guillaume Y.C. et al. (2002) Anal. Chem. 74(6): 1217–1222) was recently developed to model the retention variation of linear double stranded DNA molecules with the mobile phase velocity under SC. As well, in a previous paper (Guillaume Y.C. et al. (2001) J.Chromatogr.Sci. 39: 361–364) the SC mode was clearly visualized for the first time for specific values of the mobile phase viscosity (h) for proteins which are less flexible than DNA. In this manuscript, the effect of (i) the mobile phase viscosity (h) and (ii) three compacting agents (CAs) i.e. spermine, spermidine, hexamine cobalt on the constants of this new equation was analysed to (i) confirm that h plays a great role on the protein stretching and (ii) analyse the effect of CAs for linear DNA fragments and plasmids. Then, for the first time, it was demonstrated that CAs have different behaviour; for example, hexamine cobalt compacted only the linear DNA fragments. Thus this CA difference effect may be useful for separations of nucleic acids.

Keywords

Column liquid chromatography Slalom chromatography Reptation Proteins DNA fragments 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Carriho E (2000) Electrophoresis 21:55PubMedGoogle Scholar
  2. Dovichi NJ (1997) Electrophoresis 18:2393PubMedGoogle Scholar
  3. Little DP, Braun A, O’Donnell MJ, Koster H (1997) Nat Med 3:1413PubMedGoogle Scholar
  4. Pastinen T, Raitio, M, Lindroos K, Tainola P, Peltonen L, Syvanen AC (2000) Genome Res 10:1031CrossRefPubMedGoogle Scholar
  5. Morin PA, Saiz R, Monjazeb A (1999) Biotechniques 27:538PubMedGoogle Scholar
  6. Warren WJ, Vella G (1995) Mol Biotechnol 4:179PubMedGoogle Scholar
  7. Buck GA, Fox JW, Gunthorpe M, Hager KM, Naeve CW, Pon RT, Adams PS (1999) Biotechniques 27:528PubMedGoogle Scholar
  8. Pon RT, Buck GA, Hager KM, Naeve CW, Niece RL, Robertson M, Smith AJ (1996) Biotechniques 21:680PubMedGoogle Scholar
  9. Devaney JM, Pettit EL, Kaler SG, Vallone PM, Butler JM, Marino MA (2001) Anal Chem 73:620CrossRefPubMedGoogle Scholar
  10. Flagstad O, Roed K, Stacy JE, Jackobsen KS (1999) Mol Ecol 8:879CrossRefPubMedGoogle Scholar
  11. Hill TL, Mayhew JW (1990) J Chromatogr 512:415CrossRefPubMedGoogle Scholar
  12. Ausserer WA, Biros ML (1995) Biotechniques 19:136PubMedGoogle Scholar
  13. Gilar M, Fountain KJ, Budman Y, Neue UD, Yardley KR Rainville PD Russel RJ, Gebler JC (2002) J Chromatogr A 928:167CrossRefGoogle Scholar
  14. Crowther JB, Jones R, Hartwick RA (1981) J Chromatogr 217:479CrossRefGoogle Scholar
  15. DiMarzio EA, Guttmann CM (1970) Macromolecules, 2, 131.Google Scholar
  16. Small HJ (1974) Colloid Interface Sci 48:147Google Scholar
  17. Peyrin E, Guillaume YC, Grosset C, Ravel A, Villet C, Garrel C, Alary J, Favier A (2000) J Chromatogr A 886:1CrossRefPubMedGoogle Scholar
  18. Guillaume YC, Thomassin M, Robert JF, Guinchard C (2001) J Liq Chromatogr Relat Technol 24:1061CrossRefGoogle Scholar
  19. Guillaume YC, Truong TT, Peyrin E, Nicod L, Xicluna A, Robert JF, Thomassin M Millet (2003) J Liq Chromatogr Relat Technol 26:883CrossRefGoogle Scholar
  20. Perrin FX, Courderot-Masuyer C, Truong TT, Guinchard C, Millet J, Chaumont JP, Thomassin M, Guillaume YC, Nicod L (2002) J Chromatogr A 950:281CrossRefPubMedGoogle Scholar
  21. Guillaume YC, Thomassin M, Guinchard C (2001) J Chromatogr Sci 39:361PubMedGoogle Scholar
  22. Guillaume YC, Peyrin E, Thomassin M, Ravel A, Grosset C, Villet A, Robert JF, Guinchard C (2000) Anal Chem 72:4846CrossRefPubMedGoogle Scholar
  23. Guillaume YC, Perrin FX, Guinchard C, Nicod L, Truong TT, Xicluna A, Millet J, Thomassin M (2002) Anal Chem 74(6):1217CrossRefPubMedGoogle Scholar
  24. Peyrin E, Guillaume YC, Villet A, Ravel A, Grosset C, Alary J, Favier A (2001) J Liq Chromatogr Relat Technol 24:1245CrossRefGoogle Scholar
  25. Peyrin E, Guillaume YC (2000) Anal Chem 72:853CrossRefPubMedGoogle Scholar
  26. Peyrin E, Guillaume YC, Garrel C, Ravel A, Villet A, Grosset C, Alary J, Favier A (2000) Talanta 52:1105CrossRefGoogle Scholar
  27. Guillaume YC, Andre C, Matoga M, Truong TT, Mozer JL, Thomassin M, Guyon BC, Nicod L J Chromatogr Sci In PressGoogle Scholar
  28. Hirabayashi J, Kasai KI (1996) J Chromatogr A 722:135CrossRefPubMedGoogle Scholar
  29. Hirabayashi J, Kasai KI (2000) J Chromatogr A 89:115CrossRefGoogle Scholar
  30. Peyrin E, Caron C, Garrel C, Ravel A, Villet A, Grosset C, Favier A (2001) Talanta 55:291CrossRefGoogle Scholar
  31. DiMarzio EA, Guttmann CM (1970) Macromolecules 2:131Google Scholar
  32. Small HJ (1974) Colloid Interaface Sci 48:147Google Scholar
  33. Hirabayashi J, Kasai KI (1993) In: TT Ngo (Ed) Molecular Interactions in Bioseparations, Plenum Press, New York, Chap 5, p 69Google Scholar
  34. Hirabayasi J, Ito N, Noguchi K, Kasai KI (1990) Biochemistry 29:9515PubMedGoogle Scholar
  35. Wilson R, Bloomfield, VA (1979) Biochemistry 18:2192PubMedGoogle Scholar
  36. Bevington, PR (1969) Data reduction and error analysis for the physical sciences, McGraw- Hill: New YorkGoogle Scholar

Copyright information

© Friedr. Vieweg&Sohn Verlagsgesellschaft mbH 2004

Authors and Affiliations

  1. 1.Equipe des Sciences Séparatives et Biopharmaceutiques (2SB)Laboratoire de Chimie AnalytiqueBesançon CedexFrance

Personalised recommendations