, Volume 59, Issue 3–4, pp 153–160 | Cite as

A Comparison of the Retention Behaviour of Vitamin A and Some Metabolites Eluted from Four Different Reversed Phase High Performance Liquid Chromatographic Stationary Phases

  • U. Skogsberg
  • D. Zeeb
  • K. Albert


Five retinoids, 13-cis-retinoic acid, 9-cis-retinoic acid, all-trans-retinoic acid, all-trans-retinol and 13-cis-retinal were isocratically separated from four different reversed phase high performance liquid chromatographic stationary phases. By taking advantage of the different retention mechanisms, present between the stationary phases and the analytes, the retinoids were separated with different elution orders using the same mobile phase composition. Two of the stationary phases appeared to have more possibilities to interact with the analytes than the usual hydrophobic interactions. The stationary phase with embedded polar groups showed hydrogen bonding properties and the calix[4]arene based stationary phase showed possibilities to form inclusion complexes with the analytes. These additional interactions appeared to benefit the separations of the analytes. This publication shows the benefits by isocratically separate retinoids employing other stationary phases than the conventional C18 stationary phase.


Column liquid chromatography Retention behaviour Isocratic separation Retinoids Vitamin A 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Dietary reference intakes, (2000) National Academy Press, Washington, D. CGoogle Scholar
  2. Wyss R (1995) J Chromatogr B 671:381–425Google Scholar
  3. Morriss-Kay GM, Sokolova N (1996) FASEB J 10(9):961–968Google Scholar
  4. Hansen LA, Sigman CC, Andreola F, Ross SA, Kellof GJ, DeLuca LM (2000) Carcinogenesis 21(7):1271–1279Google Scholar
  5. Zhang X-k, Liu Y, Lee MO (1996) Mutation Res 350:267–277Google Scholar
  6. Chambon P (1996) FASEB J 10:940–954Google Scholar
  7. Roman SD, Clarke CL, Hall RE, Alexander IE, Sutherland RL (1998) Cancer Res 52:2236–2242Google Scholar
  8. Wetherall NT, Taylor CM (1986) Eur J Cancer Clin Oncol 22:53–59Google Scholar
  9. Fontana JA (1987) Exp Cell Biol 55:136–144Google Scholar
  10. Gundersen TE, Blomhoff RJ (2001) Chromatogr A 935:14–43Google Scholar
  11. Meyer VR (1999) Praxis der Hochleistungs-Flüssigchromatographie, Otto Salle Verlag GmbH, Frankfurt am MainGoogle Scholar
  12. Curley Jr RW, Carson DL, Ryzewski CN (1986) J Chromatogr 370(1):188–193Google Scholar
  13. Gundersen TE (1999) Rune Blomhoff, Methods in Enzymology 299:430–441Google Scholar
  14. Gutsche CD (1989) Calixarenes, Monographs in Supramolecular Chemistry, The Royal Society of Chemistry, CambridgeGoogle Scholar
  15. Shinkai S (1993) Tetrahedron 49:8933–3968Google Scholar
  16. Friebe S, Gebauer S, Krauss GJ, Goermar G, Krueger J (1995) J Chromatogr Sci 33:281–284Google Scholar
  17. Sokoließ T, Menyes U, Roth U, Jira Th (2002) J Chromatogr A 948(1–2):309–319Google Scholar
  18. Sander LC, Sharpless KE, Pursch M (2000) J Chromatogr A 880:189–202Google Scholar
  19. Sander LC, Sharpless KE, Craft NE, Wise SA (1994) Anal Chem 66:1667–1674Google Scholar

Copyright information

© Friedr. Vieweg&Sohn Verlagsgesellschaft mbH 2004

Authors and Affiliations

  1. 1.Institut für Organische ChemieUniversität TübingenTübingenGermany

Personalised recommendations