Advertisement

MTZ industrial

, Volume 2, Issue 1, pp 60–67 | Cite as

A NUMERICAL METHOD FOR EFFICIENCY OPTIMIZATION ON GAS ENGINES

  • NICCOLÓ PIZZIRANI
  • THOMAS LAUER
  • BERNHARD GERINGER
  • SHINSUKE MURAKAMI
RESEARCH GAS ENGINES
  • 26 Downloads

Keywords

Ignition Delay Ignition Timing Boost Pressure Indicate Mean Effective Pressure Combustion Chamber Geometry 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    Deutsches Bundesministerium für Umwelt, Naturschutz und Reaktorsicherheit: Technische Anleitung zur Reinhaltung der Luft – TA Luft 2002Google Scholar
  2. [2]
    Baufeld, T.; Lustgarten, G.; Murakami, S.; Stoewe, C.: Combustion Concepts for Future Gas Engines. 13th Conference on The Working Process of the Internal Combustion Engine, Graz, September 22 to 23, 2011Google Scholar
  3. [3]
    Lauer, T.; Pizzirani, N.; Murakami, S.: Computational Study on the Combustion Concept of a Lean Burn Gas Engine. Engine Combustion Processes 10th Congress, Haus der Technik, Munich, March 24 to 25, 2011Google Scholar
  4. [4]
    Pizzirani, N.; Lauer, T.: Computational Optimization of the Efficiency of a Large Gas Engine. AVL Advanced Simulation Technologies International User Conference, Graz, June 28 to 30, 2011Google Scholar
  5. [5]
    D’Errico, G.; Onorati, A.: Thermo-Fluid Dynamic Modelling of a Six-Cylinder Spark Ignition Engine with a Secondary Air Injection System. In: International Journal of Engine Research (2006), No. 7Google Scholar
  6. [6]
    Matthews, M. R.; Hall, M. J.: Combustion Modeling in SI Engines with a Peninsula-Fractal Combustion Model. SAE 910072, 1996Google Scholar
  7. [7]
    Warnatz, J.; Maas, U.: Technische Verbrennung. Berlin: Springer, 1993Google Scholar
  8. [8]
    Pattas, K.; Häfner, G.: Stickoxidbildung bei der ottomotorischen Verbrennung. In: Motortechnische Zeitschrift MTZ (1973), No. 12Google Scholar
  9. [9]
    Livengood, J. C.; Wu, P. C.: Correlation of Autoignition Phenomena in Internal Combustion Engines and Rapid Compression Machines. Fifth Symposium (International) on Combustion, 1955, pp. 347-356Google Scholar
  10. [10]
    Spadaccini, L. J.; Colket III, M. B.: Ignition Delay Characteristics of Methane Fuels. Prog. Energy Combust, Sci. Vol. 20, 1994, pp. 883Google Scholar
  11. [11]
    Tsuboi, T.; Wagner, H. G.: Homogeneous Thermal Oxidation of Methane in Reflected Shock Waves. 15th International Symposium on Combustion, 1974, pp. 431- 460Google Scholar
  12. [12]
    Douaud, A.; Eyzat, P.: Four-Octane-Number Method for Predicting the Anti-Knock Behavior of Fuels and Engines. SAE 780080, 1978Google Scholar
  13. [13]
    Betz, G.; Zellbeck, H.: Das Mahle Ki-Meter zur quantitativen Bestimmung der Klopfintensität. In: Motortechnische Zeitschrift MTZ 44 (1983), No. 6Google Scholar

Copyright information

© Springer Automotive Media 2012

Authors and Affiliations

  • NICCOLÓ PIZZIRANI
    • 1
  • THOMAS LAUER
    • 1
  • BERNHARD GERINGER
    • 1
  • SHINSUKE MURAKAMI
    • 2
  1. 1.Vienna University of TechnologyViennaAustria
  2. 2.AVL List GmbHGrazAustria

Personalised recommendations