Advertisement

Review on Mathematical Modelling of Electroencephalography (EEG)

  • Marion Darbas
  • Stephanie Lohrengel
Survey Article
  • 26 Downloads

Abstract

The paper reviews mathematical and numerical aspects in EEG modelling and gives researchers new in this field an overview about the state-of-the-art results and techniques on the topic. The classical dipolar source model is presented for modelling the electrical activity of the brain and several discretization methods for solving the forward model are described. Theoretical results from the mathematical analysis of the forward and inverse problem are given and an overview of the most popular numerical methods for solving the inverse problem is presented. A specific case study for EEG modelling in neonates highlights current questions that are actually asked by the clinicians.

Keywords

EEG Modelling Forward problem Source localization Inverse problems Numerical methods 

Mathematics Subject Classification (2010)

35Q92 92C50 97N40 65N30 65N21 

References

  1. 1.
    Adde, G.: Méthodes de traitement d’images appliquées au problème inverse en Magnéto-Electro-Encéphalographie. Thèse de doctorat (2005) Google Scholar
  2. 2.
    Adde, G., Clerc, M., Faugeras, O., Keriven, R., Kybic, J., Papadopoulo, T.: Symmetric BEM formulation for the M/EEG forward problem. In: Information Processing in Medical Imaging, pp. 524–535. Springer, Berlin (2003) CrossRefGoogle Scholar
  3. 3.
    Akalin Acar, Z., Makeig, S.: Effects of forward model errors on EEG source localization. Brain Topogr. 26, 378–396 (2013) CrossRefGoogle Scholar
  4. 4.
    Azizollahi, H., Darbas, M., Diallo, M.M., El Badia, A., Lohrengel, S.: EEG in neonates: forward modelling and sensitivity analysis with respect to variations of the conductivity. Math. Biosci. Eng. 15, 905–932 (2018).  https://doi.org/10.3934/mbe.2018041. MathSciNetCrossRefGoogle Scholar
  5. 5.
    Azizollahi, H., Aarabi, A., Wallois, F.: Effects of uncertainty in head tissue conductivity and complexity on EEG forward modelling in neonates. Hum. Brain Mapp. 37(10), 3604–3622 (2016) CrossRefGoogle Scholar
  6. 6.
    Baillet, S.: Toward Functional Brain Imaging of Cortical Electrophysiology Markovian Models for Magneto and Electroencephalogram Source Estimation and Experimental Assessments. Ph.D. thesis, University of Paris Orsay, France (1998) Google Scholar
  7. 7.
    Baillet, S., Mosher, J.C., Leahy, R.M.: Electromagnetic brain mapping. IEEE Signal Process. Mag. 18(6), 14–30 (2001) CrossRefGoogle Scholar
  8. 8.
    Baillet, S., Tadel, F., Leahy, R.M., Mosher, J.C., Delorme, A., Makeig, S., Oostenveld, R., Hämäläinen, M., Dalal, S.S., Zumer, J., Clerc, M., Wolters, C.H., Kiebel, S., Jensen, O.: Academic Software Toolboxes for the Analysis of MEG Data. In: IFMBE Proceedings BIOMAG2010, Dubrovnik, Croatia, vol. 28 (2010) Google Scholar
  9. 9.
    Baratchart, L., Leblond, J., Mandrea, F., Saff, E.B.: How can meromorphic approximation help to solve some 2D inverse problems for the Laplacian? Inverse Probl. 15, 79–90 (1999) MathSciNetCrossRefMATHGoogle Scholar
  10. 10.
    Baratchart, L., Ben Abda, A., Ben Hassen, F., Leblond, J.: Recovery of pointwise sources or small inclusions in 2D domains and rational approximation. Inverse Probl. 21, 51–74 (2005) MathSciNetCrossRefMATHGoogle Scholar
  11. 11.
    Baratchart, L., Leblond, J., Marmorat, J.-P.: Inverse source problem in a 3D ball from best meromorphic approximation on 2D slices. Electron. Trans. Numer. Anal. 25, 41–53 (2006) MathSciNetMATHGoogle Scholar
  12. 12.
    Bassila, R., Clerc, M., Leblond, J., Marmorat, J.-P., Papadopoulo, T.: (2008). http://www-sop.inria.fr/apics/FindSources3D/
  13. 13.
    Berg, P., Scherg, M.: A fast method for forward computation of multiple-shell spherical head models. Electroencephalogr. Clin. Neurophysiol. 90, 58–64 (1994) CrossRefGoogle Scholar
  14. 14.
    Chen, H., Halleza, F., Staelens, S.: Influence of skull conductivity perturbations on EEG dipole source analysis. Med. Phys. 37(8), 4475–4484 (2010) CrossRefGoogle Scholar
  15. 15.
    Cho, J.-H., Vorweck, J., Wolters, C.H., Knösche, T.R.: Influence of the head model on EEG and MEG source connectivity analyses. NeuroImage 10, 60–77 (2015) CrossRefGoogle Scholar
  16. 16.
    Christiansen, S., Nédélec, J.C.: A preconditioner for the electric field integral equation based on Calderon formulas. SIAM J. Numer. Anal. 40, 1100–1135 (2002) MathSciNetCrossRefMATHGoogle Scholar
  17. 17.
    Clerc, M., Kybic, J.: Cortical mapping by Laplace?Cauchy transmission using a boundary element method. Inverse Probl. 23, 2589–2601 (2007) MathSciNetCrossRefMATHGoogle Scholar
  18. 18.
    Clerc, M., Leblond, J., Marmorat, J.-P., Papadopoulo, T.: Source localization in EEG using rational approximation on plane sections. Inverse Probl. 28, 055018 (2012) CrossRefMATHGoogle Scholar
  19. 19.
    Colton, D.L., Kress, R.: Integral Equation Methods in Scattering Theory. Pure and Applied Mathematics. Wiley, New York (1983) MATHGoogle Scholar
  20. 20.
    Dannhauer, M., Lanfer, B., Wolters, C.H., Knösche, T.R.: Modelling of the human skull in EEG source analysis. Hum. Brain Mapp. 32(9), 1383–1399 (2011) CrossRefGoogle Scholar
  21. 21.
    Darbas, M., Diallo, M.M., El Badia, A., Lohrengel, S.: An inverse dipole source problem in inhomogeneous media: application to the EEG source localization in neonates. Submitted Google Scholar
  22. 22.
    Diallo, M.M.: Problème inverse de sources en Electro-Encéphalo-Graphie chez le nouveau-né. Ph.D. thesis, Université de Picardie Jules Verne, Amiens, France (2017) Google Scholar
  23. 23.
    El Badia, A., El Hajj, A.: Hölder stability estimates for some inverse pointwise source problems. C. R. Math. Acad. Sci. (Paris) 350(23–24), 1031–1035 (2012) MathSciNetCrossRefMATHGoogle Scholar
  24. 24.
    El Badia, A., Farah, M.: Identification of dipole sources in an elliptic equation from boundary measurements: application to the inverse EEG problem. J. Inverse Ill-Posed Probl. 14, 331–353 (2006) MathSciNetCrossRefMATHGoogle Scholar
  25. 25.
    El Badia, A., Farah, M.: A stable recovering of dipole sources from partial boundary measurements. Inverse Probl. 26, 115006 (2010) MathSciNetCrossRefMATHGoogle Scholar
  26. 26.
    El Badia, A., Ha-Duong, T.: An inverse source problem in potential analysis. Inverse Probl. 16, 651–663 (2000) MathSciNetCrossRefMATHGoogle Scholar
  27. 27.
    Engwer, C., Vorwerk, J., Ludewig, J., Wolters, C.H.: A discontinuous Galerkin method for the EEG forward problem. SIAM J. Sci. Comput. 39(1), B138–B164 (2017) CrossRefMATHGoogle Scholar
  28. 28.
    Farah, M.: Problèmes inverses de sources et lien avec l’Electro-encéphalo-graphie. Ph.D. thesis, Université de Technologie de Compiègne, France (2007) Google Scholar
  29. 29.
    Gargiulo, P., Belfiore, P., Friogeirsson, E.A., Vanhalato, S., Ramon, C.: The effect of fontanel on scalp EEG potentials in the neonate. Clin. Neurophysiol. 126, 1703–1710 (2015) CrossRefGoogle Scholar
  30. 30.
    Geddes, L.A., Baker, L.E.: The specific resistance of biological material - a compendium of data for the biomedical engineer and physiologist. Med. Bio. Eng 5(3), 271–293 (1967) CrossRefGoogle Scholar
  31. 31.
    Geselowitz, D.B.: On bioelectric potentials in an homogeneous volume conductor. Biophys. J. 7, 1–11 (1967) CrossRefGoogle Scholar
  32. 32.
    Gramfort, A., Papadopoulo, T., Olivi, E., Clerc, M.: OpenMEEG: opensource software for quasistatic bioelectromagnetics. Biomed. Eng. Online 9, 45 (2010) CrossRefGoogle Scholar
  33. 33.
    Grech, R., Cassar, T., Muscat, J., Camilleri, K.P., Fabri, S.G., Zervakis, M., Xanthopoulos, P., Sakkalis, V., Vanrumste, B.: Review on solving the inverse problem in EEG source analysis. J. Neuro. Rehabil. 5(25), 1–33 (2008).  https://doi.org/10.1186/1743-0003-5-25 Google Scholar
  34. 34.
    Hallez, H., Vanrumste, B., Van Hese, P., D’Asseler, Y., Lemahieu, I., Van de Walle, R.: A finite difference method with reciprocity used to incorporate anisotropy in electroencephalogram dipole source localization. Phys. Med. Biol. 50, 3787–3806 (2005) CrossRefGoogle Scholar
  35. 35.
    Hallez, H., Vanrumste, B., Grech, R., Muscat, J., De Clercq, W., Vergult, A., D’Asseler, Y., Camilleri, K.P., Fabri, S.G., Van Huffel, S.: Review on solving the forward problem in EEG source analysis. J. NeuroEng. Rehabil. 4(1), 46 (2007) CrossRefGoogle Scholar
  36. 36.
    Hämäläinen, M.S., Hari, R., Ilmoniemi, R.J., Knuutila, J., Lounasamaa, O.V.: Magnetoencephalography—theory, instrumentation, and applications to noninvasive studies of the working human brain. Rev. Mod. Phys. 65(2), 413–497 (1993) CrossRefGoogle Scholar
  37. 37.
    Hämäläinen, M.S., Ilmoniemi, R.J.: Interpreting Measured Magnetic of the Brain: Estimates of Current Distributions. Technical Report TKK-F-A559, Helsinki University of Technology, Espoo (1984) Google Scholar
  38. 38.
    Hämäläinen, M.S., Sarvas, J.: Realistic conductivity geometry model of the human head for interpretation of neuromagnetic data. IEEE Trans. Biomed. Eng. 36(2), 165–171 (1989) CrossRefGoogle Scholar
  39. 39.
    Haueisen, J., Tuch, D., Ramon, C., Schimpf, P., Wedeen, V., George, J., Belliveau, J.: The influence of brain tissue anisotropy on human EEG and MEG. NeuroImage 15, 159–166 (2002) CrossRefGoogle Scholar
  40. 40.
    Hecht, F., Pironneau, O., Le Hyaric, A., Ohtsuka, K.: FreeFem++ Manual (2014) Google Scholar
  41. 41.
    Hédou, V.: A finite difference method to solve the forward problem in electroencephalography (EEG). J. Comput. Appl. Math. 167, 35–58 (2004) MathSciNetCrossRefMATHGoogle Scholar
  42. 42.
    Kellogg, O.D.: Foundations of Potential Theory. Dover, New York (1953) MATHGoogle Scholar
  43. 43.
    Kohn, R.V., Vogelius, M.: Relaxation of a variational method of impedance computed tomography. Commun. Pure Appl. Math. 40, 745–777 (1987) MathSciNetCrossRefMATHGoogle Scholar
  44. 44.
    Kozlov, V.A., Maz’ya, V.G., Fomin, A.V.: An iterative method for solving the Cauchy problem for elliptic equations. Comput. Math. Phys. 31, 45–52 (1991) MathSciNetMATHGoogle Scholar
  45. 45.
    Kress, R.: Linear Integral Equations. Applied Mathematical Sciences, vol. 82. Springer, Berlin (1999) MATHGoogle Scholar
  46. 46.
    Kybic, J., Clerc, M., Abboud, T., Faugeras, O., Keriven, R., Papadopoulo, T.: A common formalism for the integral formulations of the forward EEG problem. IEEE Trans. Med. Imaging 24(1), 12–28 (2005) CrossRefGoogle Scholar
  47. 47.
    Kybic, J., Clerc, M., Faugeras, O., Keriven, R., Papadopoulo, T.: Fast multipole acceleration of the MEG/EEG boundary element method. Phys. Med. Biol. 50, 4695–4710 (2005) CrossRefGoogle Scholar
  48. 48.
    Kybic, J., Clerc, M., Faugeras, O., Keriven, R., Papadopoulo, T.: Generalized head models for MEG/EEG: boundary element method beyond nested volumes. Phys. Med. Biol. 51, 1333–1346 (2006) CrossRefGoogle Scholar
  49. 49.
    Lanfer, B., Scherg, M., Dannhauer, M., Knösche, T.R., Burger, M., Wolters, C.H.: Influences of skull segmentation inaccuracies on EEG source analysis. NeuroImage 62(1), 418–431 (2014) CrossRefGoogle Scholar
  50. 50.
    Lew, S., Wolters, C.H., Dierkes, T., Röer, C., MacLeod, R.S.: Accuracy and run-time comparison for different potential approaches and iterative solvers in finite element method based EEG source analysis. Appl. Numer. Math. 59(8), 1970–1988 (2009) MathSciNetCrossRefMATHGoogle Scholar
  51. 51.
    Mordecai, A.: Nonlinear Programming: Analysis and Methods. Dover, New York (2003) MATHGoogle Scholar
  52. 52.
    Lew, S., Silva, D.D., Choe, M., Ellen Grant, P., Okada, Y., Wolters, C.H., Hämäläinen, M.S.: Effects of sutures and fontanels on MEG and EEG source analysis in a realistic infant head model. NeuroImage 76, 282–293 (2013) CrossRefGoogle Scholar
  53. 53.
    Love, A.E.H.: A Treatise of Mathematical Theory of Elasticity. Cambridge University Press, Cambridge (1927) MATHGoogle Scholar
  54. 54.
    Meijs, J.W.H., Weier, O.W., Peters, M.J., van Oosterom, A.: On the numerical accuracy of the boundary element method. IEEE Trans. Biomed. Eng. 36(10), 1038–1049 (1989) CrossRefGoogle Scholar
  55. 55.
    Montes-Restrepo, V., van Mierlo, P., Strobbe, G., Staelens, S., Vandenberghe, S., Hallez, H.: Influence of skull modeling approaches on EEG source localization. Brain Topogr. 27(1), 95–111 (2014) CrossRefGoogle Scholar
  56. 56.
    Mosher, J.C., Lewis, P.S., Leahy, R.M.: Multiple dipole modeling and localization from spatio-temporal MEG data. IEEE Trans. Biomed. Eng. 39(6), 541–557 (1992) CrossRefGoogle Scholar
  57. 57.
    de Munck, J.C., Peters, M.J.: A fast method to compute the potential in the multisphere model. IEEE Trans. Biomed. Eng. 40, 1166–1174 (1993) CrossRefGoogle Scholar
  58. 58.
    Nédélec, J.-C.: Acoustic and Electromagnetic Equations. Applied Mathematical Sciences, vol. 144. Springer, New York (2001) MATHGoogle Scholar
  59. 59.
    Odabaee, M., Tokariev, A., Layeghy, S., Mesbah, M., Colditz, P.B., Ramon, C., Vanhatalo, S.: Neonatal EEG at scalp is focal and implies high skull conductivity in realistic neonatal head models. NeuroImage 96, 73–80 (2014) CrossRefGoogle Scholar
  60. 60.
    Ortiz G, J.E., Pillain, A., Rahmouni, L., Andriulli, F.P.: A Calderon regularized symmetric formulation for the electroencephalography forward problem. J. Comput. Phys., 1–21 (2018) Google Scholar
  61. 61.
    Papageorgakis, C.: Modèles de conductivité patient-spécifiques: caractérisation de l’os du crâne. Ph.D. thesis, INRIA Sophia, Université Côte d’Azur (2017) Google Scholar
  62. 62.
    Pascual-Marqui, R.D.: Review of methods for solving the EEG inverse problem. Int. J. Bioelectromagn. 1, 75–86 (1999) Google Scholar
  63. 63.
    Pascual-Marqui, R.D.: Standardized low resolution brain electromagnetic tomography (sLORETA): technical details. Methods Find. Exp. Clin. Pharmacol. 24D, 5–12 (2002). (Author’s version) Google Scholar
  64. 64.
    Pursiainen, S., Lew, S., Wolters, C.H.: Forward and inverse effects of the complete electrode model in neonatal EEG. J. Neurophysiol. 117(3), 876–884 (2017) CrossRefGoogle Scholar
  65. 65.
    Roche-Labarbe, N., Aarabi, A., Kongolo, G., Gondry-Jouet, C., Dümpelmann, M., Grebe, R., Wallois, F.: High-resolution electroencephalography and source localization in neonates. Hum. Brain Mapp. 29, 167–176 (2008) CrossRefGoogle Scholar
  66. 66.
    Rush, S., Driscoll, D.A.: Current distribution in the brain from surface electrodes. Anesth. Analg. 47, 717–723 (1967) Google Scholar
  67. 67.
    Saad, Y.: Iterative Methods for Sparse Linear Systems. PWS-Kent, Boston (1996) MATHGoogle Scholar
  68. 68.
    de Saint-Venant, A.J.C.B.: Mémoire sur la torsion des prismes. Mem. Divers Savants 14, 233–560 (1855) Google Scholar
  69. 69.
    Salo, M.: Unique continuation for elliptic equations Notes Fall (2014) Google Scholar
  70. 70.
    SimBio: A generic environment for bio-numerical simulations. https://www.mrt.uni-jena.de/simbio
  71. 71.
    Steinbach, O., Wendland, W.L.: The construction of some efficient preconditioners in the boundary element method. Adv. Comput. Math. 9, 191–216 (1998) MathSciNetCrossRefMATHGoogle Scholar
  72. 72.
    Vorwerk, J.: Comparison of Numerical Approaches to the EEG Forward Problem. Master’s thesis, University of Münster, Germany (2011) Google Scholar
  73. 73.
    Vorwerk, J.: New Finite Element Methods to Solve the EEG/MEG Forward Problem. Ph.D. thesis, University of Münster, Münster, Germany (2016) Google Scholar
  74. 74.
    Wolters, C.H., Köstler, H., Möller, C., Härdtlein, J., Grasedyck, L., Hackbusch, W.: Numerical mathematics of the subtraction method for the modelling of a current dipole in EEG source reconstruction using finite element head models. SIAM J. Sci. Comput. 30, 24–45 (2007) MathSciNetCrossRefMATHGoogle Scholar
  75. 75.
    Wolters, C.H., Anwander, A., Tricoche, X., Weinstein, D., Koch, M.A., MacLeod, R.S.: Influence of tissue conductivity anisotropy on EEG/MEG field and return current computation in a realistic head model: a simulation and visualization study using high-resolution finite element modelling. NeuroImage 30(3), 818–826 (2006) CrossRefGoogle Scholar
  76. 76.
    Xu, X., Xu, B., He, B.: An alternative subspace approach to EEG dipole source localization. Phys. Med. Biol. 49, 327–343 (2004) CrossRefGoogle Scholar
  77. 77.
    Yitembe, B.R.: Reduction of Conductivity Uncertainty Propagations in the Inverse Problem of EEG Source Analysis. Ph.D. thesis, University of Gent (2011) Google Scholar
  78. 78.
    Zhang, S.: A fast method to compute surface potentials generated by dipoles within multilayer anisotropic spheres. Phys. Med. Biol. 40, 335–349 (1995) CrossRefGoogle Scholar

Copyright information

© Deutsche Mathematiker-Vereinigung and Springer-Verlag GmbH Deutschland, ein Teil von Springer Nature 2018

Authors and Affiliations

  1. 1.LAMFA, CNRS UMR 7352Université de Picardie Jules VerneAmiensFrance
  2. 2.LMR, CNRS FRE 2011Université de Reims Champagne-ArdenneReimsFrance

Personalised recommendations