Advertisement

Jahresbericht der Deutschen Mathematiker-Vereinigung

, Volume 120, Issue 3, pp 153–219 | Cite as

Entropy Stable Finite Volume Approximations for Ideal Magnetohydrodynamics

  • Dominik Derigs
  • Gregor J. Gassner
  • Stefanie Walch
  • Andrew R. Winters
Survey Article
  • 127 Downloads

Abstract

This article serves as a summary outlining the mathematical entropy analysis of the ideal magnetohydrodynamic (MHD) equations. We select the ideal MHD equations as they are particularly useful for mathematically modeling a wide variety of magnetized fluids. In order to be self-contained we first motivate the physical properties of a magnetic fluid and how it should behave under the laws of thermodynamics. Next, we introduce a mathematical model built from hyperbolic partial differential equations (PDEs) that translate physical laws into mathematical equations. After an overview of the continuous analysis, we thoroughly describe the derivation of a numerical approximation of the ideal MHD system that remains consistent to the continuous thermodynamic principles. The derivation of the method and the theorems contained within serve as the bulk of the review article. We demonstrate that the derived numerical approximation retains the correct entropic properties of the continuous model and show its applicability to a variety of standard numerical test cases for MHD schemes. We close with our conclusions and a brief discussion on future work in the area of entropy consistent numerical methods and the modeling of plasmas.

Keywords

Computational physics Entropy conservation Entropy stability Ideal MHD equations Finite volume methods 

Notes

Acknowledgements

Dominik Derigs and Stefanie Walch acknowledge the support of the Bonn-Cologne Graduate School for Physics and Astronomy (BCGS), which is funded through the Excellence Initiative.

Gregor Gassner has been supported by the European Research Council (ERC) under the European Union’s Eights Framework Program Horizon 2020 with the research project Extreme, ERC grant agreement no. 714487.

Stefanie Walch thanks the Deutsche Forschungsgemeinschaft (DFG) for funding through the SPP 1573 “The physics of the interstellar medium” and the European Research Council under the European Community’s Framework Programme FP8 via the ERC Starting Grant RADFEEDBACK (project number 679852).

This work has been partially performed using the Cologne High Efficiency Operating Platform for Sciences (CHEOPS) HPC cluster at the Regionales Rechenzentrum Köln (RRZK), University of Cologne, Germany. Research in theoretical astrophysics is carried out within the Collaborative Research Centre 956, sub-project C5, funded by the Deutsche Forschungsgemeinschaft (DFG). The software used in this work was developed in part by the DOE NNSA ASC- and DOE Office of Science ASCR-supported FLASH Center for Computational Science at the University of Chicago.

References

  1. 1.
    Balbás, J., Tadmor, E.: A central differencing simulation of the Orszag-Tang vortex system. IEEE Trans. Plasma Sci. 33, 470–471 (2005) Google Scholar
  2. 2.
    Balsara, D.S., Spicer, D.: A staggered mesh algorithm using high order Godunov fluxes to ensure solenoidal magnetic fields in magnetohydrodynamic simulations. J. Comput. Phys. 149(2), 270–292 (1999) MathSciNetzbMATHGoogle Scholar
  3. 3.
    Barth, T.: On the role of involutions in the discontinuous Galerkin discretization of Maxwell and magnetohydrodynamic systems. In: Compatible Spatial Discretizations, pp. 69–88. Springer, Berlin (2006) Google Scholar
  4. 4.
    Barth, T., Jespersen, D.: The design and application of upwind schemes on unstructured meshes. AIAA-89-0366 (1989) Google Scholar
  5. 5.
    Barth, T.J.: Numerical methods for gasdynamic systems on unstructured meshes. In: Kröner, D., Ohlberger, M., Rohde, C. (eds.) An Introduction to Recent Developments in Theory and Numerics for Conservation Laws. Lecture Notes in Computational Science and Engineering, vol. 5, pp. 195–285. Springer, Berlin (1999) Google Scholar
  6. 6.
    Bouchut, F., Klingenberg, C., Waagan, K.: A multiwave approximate Riemann solver for ideal MHD based on relaxation. I: theoretical framework. Numer. Math. 108(1), 7–42 (2007) MathSciNetzbMATHGoogle Scholar
  7. 7.
    Brackbill, J.U., Barnes, D.C.: The effect of nonzero \(\nabla \cdot {B}\) on the numerical solution of the magnetohydrodynamic equations. J. Comput. Phys. 35(3), 426–430 (1980) MathSciNetzbMATHGoogle Scholar
  8. 8.
    Brenner, S., Scott, R.: The Mathematical Theory of Finite Element Methods, vol. 15. Springer, Berlin (2007) Google Scholar
  9. 9.
    Brio, M., Wu, C.C.: An upwind differencing scheme for the equations of ideal magnetohydrodynamics. J. Comput. Phys. 75(2), 400–422 (1988) MathSciNetzbMATHGoogle Scholar
  10. 10.
    Butcher, J.C.: A history of Runge-Kutta methods. Appl. Numer. Math. 20, 247–260 (1996) MathSciNetzbMATHGoogle Scholar
  11. 11.
    Cabral, B., Leedom, L.C.: Imaging vector fields using line integral convolution. In: Proceedings of the 20th Annual Conference on Computer Graphics and Interactive Techniques, SIGGRAPH’93, pp. 263–270. ACM, New York (1993) Google Scholar
  12. 12.
    Canuto, C., Hussaini, M.Y., Quarteroni, A., Zang, T.A.: Spectral Methods: Fundamentals in Single Domains. Springer, Berlin (2006) zbMATHGoogle Scholar
  13. 13.
    Canuto, C., Hussaini, M.Y., Quarteroni, A., Zang, T.A.: Spectral Methods: Evolution to Complex Geometries and Applications to Fluid Dynamics. Springer, Berlin (2007) zbMATHGoogle Scholar
  14. 14.
    Carpenter, M.H., Fisher, T.C., Nielsen, E.J., Frankel, S.H.: Entropy stable spectral collocation schemes for the Navier–Stokes equations: discontinuous interfaces. SIAM J. Sci. Comput. 36(5), B835–B867 (2014) MathSciNetzbMATHGoogle Scholar
  15. 15.
    Chakravarthy, S.R., Osher, S.: High resolution applications of the Osher upwind scheme for the Euler equations. AIAA-83-1943 (1983) Google Scholar
  16. 16.
    Chandrashekar, P.: Kinetic energy preserving and entropy stable finite volume schemes for compressible Euler and Navier-Stokes equations. Commun. Comput. Phys. 14, 1252–1286 (2013) MathSciNetzbMATHGoogle Scholar
  17. 17.
    Chandrashekar, P., Klingenberg, C.: Entropy stable finite volume scheme for ideal compressible MHD on 2-D Cartesian meshes. SIAM J. Numer. Anal. 54(2), 1313–1340 (2016) MathSciNetzbMATHGoogle Scholar
  18. 18.
    Chen, T., Shu, C.-W.: Entropy stable high order discontinuous Galerkin methods with suitable quadrature rules for hyperbolic conservation laws. J. Comput. Phys. 345, 427–461 (2017) MathSciNetzbMATHGoogle Scholar
  19. 19.
    Courant, R., Friedrichs, K., Lewy, H.: Über die partiellen differenzengleichungen der mathematischen physik. Math. Ann. 100(1), 32–74 (1928) MathSciNetzbMATHGoogle Scholar
  20. 20.
    Courant, R., Friedrichs, K., Lewy, H.: On partial differential equations of mathematical physics. IBM J. Res. Dev. 11, 215–234 (1967) zbMATHGoogle Scholar
  21. 21.
    Dafermos, C.: Hyperbolic Conservation Laws in Continuum Physics. Springer, Berlin (2000) zbMATHGoogle Scholar
  22. 22.
    Dai, W., Woodward, P.R.: A simple finite difference scheme for multidimensional magnetohydrodynamical equations. J. Comput. Phys. 142(2), 331–369 (1998) MathSciNetzbMATHGoogle Scholar
  23. 23.
    Dedner, A., Kemm, F., Kröner, D., Munz, C.-D., Schnitzer, T., Wesenberg, M.: Hyperbolic divergence cleaning for the MHD equations. J. Comput. Phys. 175(2), 645–673 (2002) MathSciNetzbMATHGoogle Scholar
  24. 24.
    Derigs, D., Winters, A.R., Gassner, G.J., Walch, S.: A novel averaging technique for discrete entropy stable dissipation operators for ideal MHD. J. Comput. Phys. 330, 624–632 (2016) MathSciNetzbMATHGoogle Scholar
  25. 25.
    Derigs, D., Winters, A.R., Gassner, G.J., Walch, S.: A novel high-order, entropy stable, 3D AMR MHD solver with guaranteed positive pressure. J. Comput. Phys. 317, 223–256 (2016) MathSciNetzbMATHGoogle Scholar
  26. 26.
    Derigs, D., Winters, A.R., Gassner, G.J., Walch, S., Bohm, M.: Ideal GLM-MHD: About the entropy consistent nine-wave magnetic field divergence diminishing ideal magnetohydrodynamics equations. J. Comput. Phys. (2017, submitted). arXiv:1711.06269
  27. 27.
    Dubey, A., Reid, L.B., Weide, K., Antypas, K., Ganapathy, M.K., Riley, K., Sheeler, D.J., Siegal, A.: Extensible component-based architecture for FLASH, a massively parallel, multiphysics simulation code. Parallel Comput. 35(10–11), 512–522 (2009) Google Scholar
  28. 28.
    Emery, A.F.: An evaluation of several differencing methods for inviscid fluid flow problems. J. Comput. Phys. 2(3), 306–331 (1968) MathSciNetzbMATHGoogle Scholar
  29. 29.
    Evans, C.R., Hawley, J.F.: Simulation of magnetohydrodynamic flows—a constrained transport method. Astrophys. J. 332, 659–677 (1988) Google Scholar
  30. 30.
    Evans, L.C.: Partial Differential Equations. Am. Math. Soc., Providence (2012) Google Scholar
  31. 31.
    Ferziger, J.H., Peric, M.: Computational Methods for Fluid Dynamics, 3rd edn. p. 10. Springer, Berlin (2013) zbMATHGoogle Scholar
  32. 32.
    Fisher, T.C., Carpenter, M.H.: High-order entropy stable finite difference schemes for nonlinear conservation laws: finite domains. J. Comput. Phys. 252, 518–557 (2013) MathSciNetzbMATHGoogle Scholar
  33. 33.
    Fisher, T.C., Carpenter, M.H., Nordström, J., Yamaleev, N.K., Swanson, C.: Discretely conservative finite-difference formulations for nonlinear conservation laws in split form: Theory and boundary conditions. J. Comput. Phys. 234, 353–375 (2013) MathSciNetzbMATHGoogle Scholar
  34. 34.
    Fjordholm, U.S., Mishra, S., Tadmor, E.: Well-balanced and energy stable schemes for the shallow water equations with discontinuous topography. J. Comput. Phys. 230(14), 5587–5609 (2011) MathSciNetzbMATHGoogle Scholar
  35. 35.
    Fjordholm, U.S., Mishra, S., Tadmor, E.: Arbitrarily high-order accurate entropy stable essentially nonoscillatory schemes for systems of conservation laws. SIAM J. Numer. Anal. 50(2), 544–573 (2012) MathSciNetzbMATHGoogle Scholar
  36. 36.
    Fjordholm, U.S., Deep, R.: A sign preserving WENO reconstruction method. J. Sci. Comput. 68(1), 42–63 (2016) MathSciNetzbMATHGoogle Scholar
  37. 37.
    Frank, H.M., Munz, C.-D.: Direct aeroacoustic simulation of acoustic feedback phenomena on a side-view mirror. J. Sound Vib. 371, 132–149 (2016) Google Scholar
  38. 38.
    Freidberg, J.P.: Ideal Magnetohydrodynamics. Plenum Press, New York (1987) Google Scholar
  39. 39.
    Friedrichs, K.O., Lax, P.D.: Systems of conversation equations with a convex extension. Proc. Natl. Acad. Sci. 68(8), 1686–1688 (1971) zbMATHGoogle Scholar
  40. 40.
    Fryxell, B., Olson, K., Ricker, P., Timmes, F.X., Zingale, M., Lamb, D.Q., MacNeice, P., Rosner, R., Truran, J.W., Tufo, H.: FLASH: an adaptive mesh hydrodynamics code for modeling astrophysical thermonuclear flashes. Astrophys. J. Suppl. Ser. 131, 273–334 (2000) Google Scholar
  41. 41.
    Gassner, G.J.: A skew-symmetric discontinuous Galerkin spectral element discretization and its relation to SBP-SAT finite difference methods. SIAM J. Sci. Comput. 35(3), A1233–A1253 (2013) MathSciNetzbMATHGoogle Scholar
  42. 42.
    Gassner, G.J., Beck, A.D.: On the accuracy of high-order discretizations for underresolved turbulence simulations. Theor. Comput. Fluid Dyn. 27(3), 221–237 (2013) Google Scholar
  43. 43.
    Gassner, G.J., Winters, A.R., Hindenlang, F.J., Kopriva, D.A.: The BR1 scheme is stable for the compressible Navier-Stokes equations. J. Sci. Comput. (2017, under revision). arXiv:1704.03646
  44. 44.
    Gassner, G.J., Winters, A.R., Kopriva, D.A.: Split form nodal discontinuous Galerkin schemes with summation-by-parts property for the compressible Euler equations. J. Comput. Phys. 327, 39–66 (2016) MathSciNetzbMATHGoogle Scholar
  45. 45.
    Gassner, G.J., Winters, A.R., Kopriva, D.A.: A well balanced and entropy conservative discontinuous Galerkin spectral element method for the shallow water equations. Appl. Math. Comput. 272(2), 291–308 (2016) MathSciNetGoogle Scholar
  46. 46.
    Gatto, A., Walch, S., Naab, T., Girichidis, P., Wünsch, R., Glover, S.C.O., Klessen, R.S., Clark, P.C., Peters, T., Derigs, D., Baczynski, C., Puls, J.: The SILCC project—III. Regulation of star formation and outflows by stellar winds and supernovae. Mon. Not. R. Astron. Soc. 466, 1903–1924 (2017) Google Scholar
  47. 47.
    Girichidis, P., Walch, S., Naab, T., Gatto, A., Wünsch, R., Glover, S.C.O., Klessen, R.S., Clark, P.C., Peters, T., Derigs, D., Baczynski, C.: The SILCC (SImulating the LifeCycle of molecular Clouds) project—II. Dynamical evolution of the supernova-driven ISM and the launching of outflows. Mon. Not. R. Astron. Soc. 456, 3432–3455 (2016) Google Scholar
  48. 48.
    Godunov, S.K.: An interesting class of quasilinear systems. Dokl. Akad. Nauk SSSR 139, 521–523 (1961) MathSciNetzbMATHGoogle Scholar
  49. 49.
    Godunov, S.K.: Symmetric form of the equations of magnetohydrodynamics. In: Numerical Methods for Mechanics of Continuum Medium, vol. 1, pp. 26–34 (1972) Google Scholar
  50. 50.
    Gottlieb, S., Shu, C.-W., Tadmor, E.: Strong stability-preserving high-order time discretization methods. SIAM Rev. 43(1), 89–112 (2001) MathSciNetzbMATHGoogle Scholar
  51. 51.
    Harten, A.: On the symmetric form of systems of conservation laws with entropy. J. Comput. Phys. 49, 151–164 (1983) MathSciNetzbMATHGoogle Scholar
  52. 52.
    Helzel, C., Rossmanith, J.A., Taetz, B.: A high-order unstaggered constrained-transport method for the three-dimensional ideal magnetohydrodynamic equations based on the method of lines. SIAM J. Sci. Comput. 35(2), A623–A651 (2013) MathSciNetzbMATHGoogle Scholar
  53. 53.
    Hiltebrand, A., Mishra, S.: Entropy stable shock capturing space–time discontinuous Galerkin schemes for systems of conservation laws. Numer. Math. 126(1), 130–151 (2014) MathSciNetzbMATHGoogle Scholar
  54. 54.
    Hiltebrand, A., Mishra, S.: Entropy stability and well-balancedness of space-time DG for the shallow water equations with bottom topography. Netw. Heterog. Media 11(1), 145–162 (2016) MathSciNetzbMATHGoogle Scholar
  55. 55.
    Ismail, F., Roe, P.L.: Affordable, entropy-consistent Euler flux functions II: entropy production at shocks. J. Comput. Phys. 228(15), 5410–5436 (2009) MathSciNetzbMATHGoogle Scholar
  56. 56.
    Jackson, J.D.: Classical Electrodynamics, 2nd edn. Wiley, New York (1975) zbMATHGoogle Scholar
  57. 57.
    Jameson, A.: Formulation of kinetic energy preserving conservative schemes for gas dynamics and direct numerical simulation of one-dimensional viscous compressible flow in a shock tube using entropy and kinetic energy preserving schemes. J. Sci. Comput. 34(3), 188–208 (2008) MathSciNetzbMATHGoogle Scholar
  58. 58.
    Janhunen, P.: A positive conservative method for magnetohydrodynamics based on HLL and Roe methods. J. Comput. Phys. 160(2), 649–661 (2000) MathSciNetzbMATHGoogle Scholar
  59. 59.
    Jiang, G., Shu, C.-W.: On a cell entropy inequality for discontinuous Galerkin methods. Math. Comput. 62(206), 531–538 (1994) MathSciNetzbMATHGoogle Scholar
  60. 60.
    Johnson, C.: Numerical Solution of Partial Differential Equations by the Finite Element Method. Courier Corporation, North Chelmsford (2012) Google Scholar
  61. 61.
    Kosmann-Schwarzbach, Y.: The Noether Theorems: Invariance and Conservation Laws in the Twentieth Century. Springer, Berlin (2011) zbMATHGoogle Scholar
  62. 62.
    Kružkov, S.N.: First order quasilinear equations in several independent variables. Math. USSR Sb. 10(2), 127–243 (1970) Google Scholar
  63. 63.
    Kuznetsov, N.N.: Accuracy of some approximate methods for computing the weak solutions of a first-order quai-linear equation. USSR Comput. Math. Math. Phys. 16(6), 105–119 (1976) Google Scholar
  64. 64.
    Landau, L.D.: Fluid Mechanics, vol. 6. Pergamon, Elmsford (1959) Google Scholar
  65. 65.
    Lax, P.D.: Weak solutions of nonlinear hyperbolic conservation equations and their numerical computation. Commun. Pure Appl. Math. 7(1), 159–193 (1954) zbMATHGoogle Scholar
  66. 66.
    Lax, P.D.: Hyperbolic difference equations: a review of the Courant-Friedrichs-Lewy paper in the light of recent developments. IBM J. Res. Dev. 11(2), 235–238 (1967) MathSciNetzbMATHGoogle Scholar
  67. 67.
    Lax, P.D.: Shock waves and entropy. In: Zarantonello, E.A. (ed.) Contributions to Nonlinear Functional Analysis, pp. 603–634. Academic Press, San Diego (1971) Google Scholar
  68. 68.
    Lax, P.D., Wendroff, B.: Systems of conservations laws. Commun. Pure Appl. Math. 13, 217–237 (1960) zbMATHGoogle Scholar
  69. 69.
    LeFloch, P.G., Rohde, C.: High-order schemes, entropy inequalities, and nonclassical shocks. SIAM J. Numer. Anal. 37(6), 2023–2060 (2000) MathSciNetzbMATHGoogle Scholar
  70. 70.
    LeVeque, R.J.: Numerical Methods for Conservation Laws. Springer, Berlin (1992) zbMATHGoogle Scholar
  71. 71.
    LeVeque, R.J.: Finite Volume Methods for Hyperbolic Problems, vol. 31. Cambridge University Press, Cambridge (2002) zbMATHGoogle Scholar
  72. 72.
    LeVeque, R.J.: Finite Difference Methods for Ordinary and Partial Differential Equations: Steady-State and Time-Dependent Problems. SIAM, Philadelphia (2007) zbMATHGoogle Scholar
  73. 73.
    Liu, Y., Shu, C.-W., Zhang, M.: Entropy stable high order discontinuous Galerkin methods for ideal compressible MHD on structured meshes. J. Comput. Phys. 354, 163–178 (2017) MathSciNetzbMATHGoogle Scholar
  74. 74.
    Londrillo, P., Zanna, L.D.: High-order upwind schemes for multidimensional magnetohydrodynamics. Astrophys. J. 530, 508–524 (2000) Google Scholar
  75. 75.
    Marder, B.: A method for incorporating Gauss’ law into electromagnetic PIC codes. J. Comput. Phys. 68(1), 48–55 (1987) zbMATHGoogle Scholar
  76. 76.
    Maxima: Maxima, a computer algebra system. version 5.41.0, 2017 Google Scholar
  77. 77.
    Merriam, M.L.: An entropy-based approach to nonlinear stability. NASA Tech. Memo. 101086(64), 1–154 (1989) MathSciNetGoogle Scholar
  78. 78.
    Meschede, D.: Gerthsen Physik, 25th edn. Springer, Berlin (2015) zbMATHGoogle Scholar
  79. 79.
    Mishra, S.: Entropy stable high-order schemes for systems of conservation laws. In: Modern Techniques in the Numerical Solution of Partial Differential Equations (2011) Google Scholar
  80. 80.
    Mock, M.S.: Systems of conservation laws of mixed type. J. Differ. Equ. 37(1), 70–88 (1980) MathSciNetzbMATHGoogle Scholar
  81. 81.
    Munz, C.-D., Westermann, T.: Numerische Behandlung gewöhnlicher und partieller Differenzialgleichungen: Ein interaktives Lehrbuch für Ingenieure (German Edition). 2. bearb. u. aktualisierte aufl. edition. Springer, Berlin (2009) zbMATHGoogle Scholar
  82. 82.
    Noether, E.: Invariante variationsprobleme. Nachr. König. Gesell. Wissen. Göttingen, Math.–Phys. Kl. 235–257 (1918) Google Scholar
  83. 83.
    Olson, K.: PARAMESH: a parallel, adaptive grid tool. In: Deane, A., Ecer, A., Brenner, G., Emerson, D., McDonough, J., Periaux, J., Satofuka, N., Tromeur-Dervout, D. (eds.) Parallel Computational Fluid Dynamics 2005, pp. 341–348. Elsevier, Amsterdam (2006) Google Scholar
  84. 84.
    Orszag, S.A., Tang, C.-M.: Small-scale structure of two-dimensional magnetohydrodynamic turbulence. J. Fluid Mech. 90(01), 129–143 (1979) Google Scholar
  85. 85.
    Parsani, M., Carpenter, M.H., Fisher, T.C., Nielsen, E.J.: Entropy stable staggered grid discontinuous spectral collocation methods of any order for the compressible Navier–Stokes equations. SIAM J. Sci. Comput. 38(5), A3129–A3162 (2016) MathSciNetzbMATHGoogle Scholar
  86. 86.
    Powell, K.G.: An approximate Riemann solver for magnetohydrodynamics (that works in more than one dimension). Technical report, DTIC Document (1994) Google Scholar
  87. 87.
    Powell, K.G., Roe, P.L., Linde, T.J., Gombosi, T.I., De Zeeuw, D.L.: A solution-adaptive upwind scheme for ideal magnetohydrodynamics. J. Comput. Phys. 154, 284–309 (1999) MathSciNetzbMATHGoogle Scholar
  88. 88.
    Quarteroni, A., Sacco, R., Saleri, F.: Numerical Mathematics, vol. 37. Springer, Berlin (2010) zbMATHGoogle Scholar
  89. 89.
    Deep, R., Chandrashekar, P.: Entropy stable schemes for compressible Euler equations. Int. J. Numer. Anal. Model. Ser. B 4(4), 335–352 (2013) MathSciNetzbMATHGoogle Scholar
  90. 90.
    Ray, D., Chandrashekar, P., Fjordholm, U.S., Mishra, S.: Entropy stable scheme on two-dimensional unstructured grids for Euler equations. Commun. Comput. Phys. 19(5), 1111–1140 (2016) MathSciNetzbMATHGoogle Scholar
  91. 91.
    Roe, P.L.: Approximate Riemann solvers, parameter vectors, and difference schemes. J. Comput. Phys. 135(2), 250–258 (1981) MathSciNetzbMATHGoogle Scholar
  92. 92.
    Roe, P.L.: Characteristic-based schemes for the Euler equations. Annu. Rev. Fluid Mech. 18, 337–365 (1986) MathSciNetzbMATHGoogle Scholar
  93. 93.
    Roe, P.L., Balsara, D.S.: Notes on the eigensystem of magnetohydrodynamics. SIAM J. Appl. Math. 56(1), 57–67 (1996) MathSciNetzbMATHGoogle Scholar
  94. 94.
    Schmidtmann, B., Seibold, B., Torrilhon, M.: Relations between WENO3 and third-order limiting in finite volume methods. J. Sci. Comput. 68(2), 624–652 (2016) MathSciNetzbMATHGoogle Scholar
  95. 95.
    Shen, J., Tang, T.: Spectral and High-Order Methods with Applications. Science Press, Beijing (2006) zbMATHGoogle Scholar
  96. 96.
    Sod, G.A.: A survey of several finite difference methods for systems of nonlinear hyperbolic conservation laws. J. Comput. Phys. 27(1), 1–31 (1978) MathSciNetzbMATHGoogle Scholar
  97. 97.
    Strauss, W.A.: Partial Differential Equations. Wiley, New York (1992) zbMATHGoogle Scholar
  98. 98.
    Strikwerda, J.C.: Finite Difference Schemes and Partial Differential Equations. SIAM, Philadelphia (2004) zbMATHGoogle Scholar
  99. 99.
    Magnus, S.: Entropy solutions of the compressible Euler equations. BIT Numer. Math. 56(4), 1479–1496 (2016) MathSciNetzbMATHGoogle Scholar
  100. 100.
    Sweby, P.K.: High resolution schemes using flux limiters for hyperbolic conservation laws. SIAM J. Numer. Anal. 21(5), 995–1011 (1984) MathSciNetzbMATHGoogle Scholar
  101. 101.
    Tadmor, E.: Skew-selfadjoint form for systems of conservation laws. J. Math. Anal. Appl. 103(2), 428–442 (1984) MathSciNetzbMATHGoogle Scholar
  102. 102.
    Tadmor, E.: Entropy functions for symmetric systems of conservation laws. J. Math. Anal. Appl. 122(2), 355–359 (1987) MathSciNetzbMATHGoogle Scholar
  103. 103.
    Tadmor, E.: Entropy stability theory for difference approximations of nonlinear conservation laws and related time-dependent problems. Acta Numer. 12, 451 (2003) MathSciNetzbMATHGoogle Scholar
  104. 104.
    Tadmor, E.: Perfect derivatives, conservative differences and entropy stable computation of hyperbolic conservation laws. Discrete Contin. Dyn. Syst., Ser. A 36(8), 4579–4598 (2016) MathSciNetzbMATHGoogle Scholar
  105. 105.
    Tipler, P.A., Mosca, G.: Physics for Scientists and Engineers, 6th edn. Freeman, New York (2007) Google Scholar
  106. 106.
    Toro, E.F.: Riemann Solvers and Numerical Methods for Fluid Dynamics: A Practical Introduction. Springer, Berlin (2009) zbMATHGoogle Scholar
  107. 107.
    Tóth, G.: The \(\nabla \cdot {B}=0\) constraint in shock-capturing magnetohydrodynamics codes. J. Comput. Phys. 161(2), 605–652 (2000) MathSciNetzbMATHGoogle Scholar
  108. 108.
    Tricco, T.S., Price, D.J., Bate, M.R.: Constrained hyperbolic divergence cleaning in smoothed particle magnetohydrodynamics with variable cleaning speeds. J. Comput. Phys. 322, 326–344 (2016) MathSciNetzbMATHGoogle Scholar
  109. 109.
    van Leer, B.: Towards the ultimate conservative difference scheme. V. A second-order sequel to Godunov’s method. J. Comput. Phys. 32(1), 101–136 (1979) zbMATHGoogle Scholar
  110. 110.
    Waagan, K., Federrath, C., Klingenberg, C.: A robust numerical scheme for highly compressible magnetohydrodynamics: nonlinear stability, implementation and tests. J. Comput. Phys. 230(9), 3331–3351 (2011) MathSciNetzbMATHGoogle Scholar
  111. 111.
    Walch, S.K., Girichidis, P., Naab, T., Gatto, A., Glover, S.C.O., Wünsch, R., Klessen, R.S., Clark, P.C., Peters, T., Derigs, D., Baczynski, C.: The SILCC (SImulating the LifeCycle of molecular Clouds) project—I. Chemical evolution of the supernova-driven ISM. Mon. Not. R. Astron. Soc. 454(1), 246–276 (2015) Google Scholar
  112. 112.
    Wintermeyer, N., Winters, A.R., Gassner, G.J., Kopriva, D.A.: An entropy stable discontinuous Galerkin method for the two dimensional shallow water equations with discontinuous bathymetry. J. Comput. Phys. 340, 200–242 (2017) MathSciNetzbMATHGoogle Scholar
  113. 113.
    Winters, A.R., Derigs, D., Gassner, G.J., Walch, S.: A uniquely defined entropy stable matrix dissipation operator for high Mach number ideal MHD and compressible Euler simulations. J. Comput. Phys. 332, 274–289 (2017) MathSciNetzbMATHGoogle Scholar
  114. 114.
    Winters, A.R., Gassner, G.J.: Affordable, entropy conserving and entropy stable flux functions for the ideal MHD equations. J. Comput. Phys. 304, 72–108 (2016) MathSciNetzbMATHGoogle Scholar
  115. 115.
    Winters, A.R., Gassner, G.J.: An entropy stable finite volume scheme for the equations of shallow water magnetohydrodynamics. J. Sci. Comput. 67(2), 514–539 (2016) MathSciNetzbMATHGoogle Scholar
  116. 116.
    Woodward, P., Colella, P.: The numerical simulation of two-dimensional fluid flow with strong shocks. J. Comput. Phys. 54(1), 115–173 (1984) MathSciNetzbMATHGoogle Scholar

Copyright information

© Deutsche Mathematiker-Vereinigung and Springer-Verlag GmbH Deutschland, ein Teil von Springer Nature 2018
corrected publication 2018

Authors and Affiliations

  • Dominik Derigs
    • 1
  • Gregor J. Gassner
    • 2
  • Stefanie Walch
    • 1
  • Andrew R. Winters
    • 2
  1. 1.I. Physikalisches InstitutUniversität zu KölnKölnGermany
  2. 2.Mathematisches InstitutUniversität zu KölnKölnGermany

Personalised recommendations