Skip to main content
Log in

Characterization of 2024-T351 friction stir welding joints

  • Peer Reviewed Articles
  • Published:
Journal of Failure Analysis and Prevention Aims and scope Submit manuscript

Abstract

Characterization of macrostructure, microstructure, hardness, precipitate distribution, residual stress, and cyclic deformation behavior of 2024-T351 friction stir welded joints has been conducted. Inhomogeneous microparameters governing the nonuniform residual stresses and cyclic strength are discussed. The cyclic strength of the weld microregimes is controlled by grain size and distribution of precipitates achieved during the weld process. The comprehensive information of micro-and macromechanics is used to assist in understanding the mechanism that governed the fatigue crack initiation, propagation, and life of the welded joints.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S.W. Williams: “Welding Airframes Using Friction Stir,” Air Space Eur., 2001, 3, pp. 64–66.

    Article  Google Scholar 

  2. C.J. Dawes: “An Introduction to Friction Stir Welding and Its Development,” Weld. Met. Fabr., 1995, 63(1), pp. 13–16.

    CAS  Google Scholar 

  3. G. Bussu and P.E. Irving: “The Role of Residual Stress and Heat Affected Zone Properties on Fatigue Crack Propagation in Friction Stir Welded 2024-T351 Aluminum Joints,” Int. J. Fatigue, 2003, 25, pp. 77–88.

    Article  CAS  Google Scholar 

  4. D. Booth and I. Sinclair: “Fatigue of Friction Stir Welded 2024-T351 Aluminum Alloy,” Mater. Sci. Forum, 2002, 396–402, pp. 1671–76.

    Article  Google Scholar 

  5. M.A. Sutton, B. Yang, A.P. Reynolds, and R. Taylor: “Microstructural Studies of Friction Stir Welds in 2024-T3 Aluminum,” Mater. Sci. Eng. A, 2002, 323, pp. 160–66.

    Article  Google Scholar 

  6. C. Dalle Donne and G. Biallas: “Fatigue and Fracture Performance of Friction Stir Welded 2024-T3 Joints,” Proc. European Conference on Spacecraft Structure, Material and Mechanical Testing (Braunschweig, Germany), 1999, 428, pp. 309–14.

  7. M.W. Mahoney, C.G. Rhodes, J.G. Flintoff, R.A. Spurling, and W.H. Bingel: “Properties of Friction Stir Welded 7075 T651 Aluminum,” Metall. Mater. Trans. A, 1998, 29, pp. 1955–64.

    Article  Google Scholar 

  8. K.V. Jata, K.K. Sankaran, and J.J. Ruschau: “Friction Stir Welding Effects on Microstructure and Fatigue of Aluminum Alloy 7050-T7451,” Metall. Mater. Trans. A, 2000, 31(9), pp. 2181–92.

    Article  Google Scholar 

  9. L.E. Murr, Y. Li, E.A. Trillo, R.D. Flores, and J.C. McClure: “Microstructure in Friction Stir Welded Metals,” J. Mater. Process. Manuf. Sci., 1998, 7, pp. 145–61.

    Article  CAS  Google Scholar 

  10. B. Heinz, B. Skrotzki, and G. Eggeler: “Microstructural and Mechanical Characterization of a Friction Stir Welded Al-Alloy,” Mater. Sci. Forum, 2000, 331–337, pp. 1757–62.

    Google Scholar 

  11. Y.S. Sato and H. Kokawa: “Distribution of Tensile Property and Microstructure in Friction Stir Weld of 6063 Aluminum,” Metall. Mater. Trans. A, 2001, 32(12), pp. 3023–31.

    Article  Google Scholar 

  12. Y.J. Kwan, N. Saito, and I. Shigematsu: “Friction Stir Process as a New Manufacturing Technique of Ultrafine Grained Aluminum Alloy,” J. Mater. Sci. Lett., 2002, 21, pp. 1473–76.

    Article  Google Scholar 

  13. O.V. Flores, C. Kennedy, L.E. Murr, D. Brown, S. Pappu, B.M. Nowak, and J.C. McClure: “Microstructural Issues in a Friction Stir Welded Aluminum Alloy,” Scr. Mater., 1998, 38(5), pp. 703–08.

    Article  CAS  Google Scholar 

  14. Y.S. Sato, S.H.C. Park, and H. Kokawa: “Microstructure Factors Governing Hardness in Friction Stir Welds of Solid Solution Hardened Al Alloys,” Metall. Mater. Trans. A, Phys. Metall. Mater. Sci., 2001, 32(12), pp. 3033–42.

    Article  Google Scholar 

  15. J. Lu: Handbook of Measurement of Residual Stresses, Society for Experimental Mechanics, (SEM) Inc., 1996, pp. 33–69.

  16. A. Nadai: Theory of Flow and Fracture of Solids, vol. 1, 2nd ed., McGraw-Hill Inc., 1950.

  17. R.C. Juvinall: Fundamentals of Machine Component Design, 2nd ed., John Wiley & Sons, Inc., 1991.

  18. K.A.A. Hassan, A.F. Norman, D.A. Price, and P.B. Prangnell: “Stability of Nugget Zone Grain Structures in High Strength Al-Alloy Friction Stir Welds during Solution Treatment,” Acta Mater., 2003, 51, pp. 1923–36.

    Article  CAS  Google Scholar 

  19. N.E. Dowling: Mechanical Behavior of Material, 2nd ed., Prentice Hall, 1998, p. 590.

  20. S. Benavides, Y. Li, L.E. Murr, D. Brown, and J.C. McClure: “Low Temperature Friction Stir Welding of 2024 Aluminum,” Scr. Mater., 1999, 41(8), pp. 809–15.

    Article  CAS  Google Scholar 

  21. K.V. Jata and S.L. Semiatin: “Continuous Dynamic Recrystallization during Friction Stir Welding of High Strength Aluminum Alloys,” Scr. Mater., 2000, 43, pp. 743–49.

    Article  CAS  Google Scholar 

  22. I. Shigematsu, N. Saito, T. Tamaki, and G. Yamauchi: “Production of Fine Grained Aluminum Alloy by Friction Stir Processing,” Friction Stir Welding and Processing, K.V. Jata, M.W. Mahoney, R.S. Mishra, S.L. Semiatin, and D.P. Field, ed., TMS, 2001, pp. 217–24.

  23. L. Litynska, R. Braun, G. Staniek, C. Dalle Donne, and J. Dutkiewicz: “TEM Study of the Microstructure Evolution in a Friction Stir Welded AlCuMgAg Alloy,” Mater. Chem. Phys., 2003, 9764, pp. 1–3.

    Google Scholar 

  24. G. Bussu: “Damage Tolerance of Welded Aluminum Aircraft Structure,” Ph.D. Thesis, Cranfield University, 2000.

  25. C. Dalle Donne, E. Lima, J. Wegener, A. Pyzalla, and T. Buslaps: “Investigations on Residual Stress in Friction Stir Welds,” Third Int. Symp. Friction Stir Welding, Sep 27–28, 2001 (Kobe, Japan), TWI, U.K., 2001.

    Google Scholar 

  26. A.P. Reynolds, W. Tang, T.G. Herold, and H. Prask: “Structure, Properties, and Residual Stress of 340L Stainless Steel Friction Stir Welds,” Scr. Mater., 2003, 48, pp. 1289–94.

    Article  CAS  Google Scholar 

  27. L.D. Oosterkam, P.J. Webster, P.A. Browne, G.B.M. Vaughan, and P.J. Withers: “Residual Stress Field in a Friction Stir Welding Aluminum Extrusion,” Mater. Sci. Forum, 2000, 347–349, pp. 678–83.

    Google Scholar 

  28. R. John and K.V. Jata: “Residual Stress Effects on Near-Threshold Fatigue Crack Growth in Friction Stir Welds,” Friction Stir Welding and Processing, K.V. Jata, M.W. Mahoney, R.S. Mishra, S.L. Semiatin, and D.P. Field, ed., TMS, 2001, pp. 57–70.

  29. P.J. Webster, L.D. Oosterkamp, P.A. Browne, D.J. Hughes, W.P. Kang, P.J. Withers, and G.B.M. Vaughan: “Synchrotron X-Ray Residual Strain Scanning of a Friction Stir Weld,” J. Strain Anal., 2001, 36(1), pp. 61–70.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ali, A., Brown, M.W., Rodopoulos, C.A. et al. Characterization of 2024-T351 friction stir welding joints. J Fail. Anal. and Preven. 6, 83–96 (2006). https://doi.org/10.1361/154770206X117559

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1361/154770206X117559

Keywords

Navigation