Journal of Failure Analysis and Prevention

, Volume 6, Issue 4, pp 83–96 | Cite as

Characterization of 2024-T351 friction stir welding joints

  • A. Ali
  • M. W. Brown
  • C. A. Rodopoulos
  • S. Gardiner
Peer Reviewed Articles


Characterization of macrostructure, microstructure, hardness, precipitate distribution, residual stress, and cyclic deformation behavior of 2024-T351 friction stir welded joints has been conducted. Inhomogeneous microparameters governing the nonuniform residual stresses and cyclic strength are discussed. The cyclic strength of the weld microregimes is controlled by grain size and distribution of precipitates achieved during the weld process. The comprehensive information of micro-and macromechanics is used to assist in understanding the mechanism that governed the fatigue crack initiation, propagation, and life of the welded joints.


manufacturing standards mechanical component mechanical tests weld 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    S.W. Williams: “Welding Airframes Using Friction Stir,” Air Space Eur., 2001, 3, pp. 64–66.CrossRefGoogle Scholar
  2. 2.
    C.J. Dawes: “An Introduction to Friction Stir Welding and Its Development,” Weld. Met. Fabr., 1995, 63(1), pp. 13–16.Google Scholar
  3. 3.
    G. Bussu and P.E. Irving: “The Role of Residual Stress and Heat Affected Zone Properties on Fatigue Crack Propagation in Friction Stir Welded 2024-T351 Aluminum Joints,” Int. J. Fatigue, 2003, 25, pp. 77–88.CrossRefGoogle Scholar
  4. 4.
    D. Booth and I. Sinclair: “Fatigue of Friction Stir Welded 2024-T351 Aluminum Alloy,” Mater. Sci. Forum, 2002, 396–402, pp. 1671–76.CrossRefGoogle Scholar
  5. 5.
    M.A. Sutton, B. Yang, A.P. Reynolds, and R. Taylor: “Microstructural Studies of Friction Stir Welds in 2024-T3 Aluminum,” Mater. Sci. Eng. A, 2002, 323, pp. 160–66.CrossRefGoogle Scholar
  6. 6.
    C. Dalle Donne and G. Biallas: “Fatigue and Fracture Performance of Friction Stir Welded 2024-T3 Joints,” Proc. European Conference on Spacecraft Structure, Material and Mechanical Testing (Braunschweig, Germany), 1999, 428, pp. 309–14.Google Scholar
  7. 7.
    M.W. Mahoney, C.G. Rhodes, J.G. Flintoff, R.A. Spurling, and W.H. Bingel: “Properties of Friction Stir Welded 7075 T651 Aluminum,” Metall. Mater. Trans. A, 1998, 29, pp. 1955–64.CrossRefGoogle Scholar
  8. 8.
    K.V. Jata, K.K. Sankaran, and J.J. Ruschau: “Friction Stir Welding Effects on Microstructure and Fatigue of Aluminum Alloy 7050-T7451,” Metall. Mater. Trans. A, 2000, 31(9), pp. 2181–92.CrossRefGoogle Scholar
  9. 9.
    L.E. Murr, Y. Li, E.A. Trillo, R.D. Flores, and J.C. McClure: “Microstructure in Friction Stir Welded Metals,” J. Mater. Process. Manuf. Sci., 1998, 7, pp. 145–61.CrossRefGoogle Scholar
  10. 10.
    B. Heinz, B. Skrotzki, and G. Eggeler: “Microstructural and Mechanical Characterization of a Friction Stir Welded Al-Alloy,” Mater. Sci. Forum, 2000, 331–337, pp. 1757–62.Google Scholar
  11. 11.
    Y.S. Sato and H. Kokawa: “Distribution of Tensile Property and Microstructure in Friction Stir Weld of 6063 Aluminum,” Metall. Mater. Trans. A, 2001, 32(12), pp. 3023–31.CrossRefGoogle Scholar
  12. 12.
    Y.J. Kwan, N. Saito, and I. Shigematsu: “Friction Stir Process as a New Manufacturing Technique of Ultrafine Grained Aluminum Alloy,” J. Mater. Sci. Lett., 2002, 21, pp. 1473–76.CrossRefGoogle Scholar
  13. 13.
    O.V. Flores, C. Kennedy, L.E. Murr, D. Brown, S. Pappu, B.M. Nowak, and J.C. McClure: “Microstructural Issues in a Friction Stir Welded Aluminum Alloy,” Scr. Mater., 1998, 38(5), pp. 703–08.CrossRefGoogle Scholar
  14. 14.
    Y.S. Sato, S.H.C. Park, and H. Kokawa: “Microstructure Factors Governing Hardness in Friction Stir Welds of Solid Solution Hardened Al Alloys,” Metall. Mater. Trans. A, Phys. Metall. Mater. Sci., 2001, 32(12), pp. 3033–42.CrossRefGoogle Scholar
  15. 15.
    J. Lu: Handbook of Measurement of Residual Stresses, Society for Experimental Mechanics, (SEM) Inc., 1996, pp. 33–69.Google Scholar
  16. 16.
    A. Nadai: Theory of Flow and Fracture of Solids, vol. 1, 2nd ed., McGraw-Hill Inc., 1950.Google Scholar
  17. 17.
    R.C. Juvinall: Fundamentals of Machine Component Design, 2nd ed., John Wiley & Sons, Inc., 1991.Google Scholar
  18. 18.
    K.A.A. Hassan, A.F. Norman, D.A. Price, and P.B. Prangnell: “Stability of Nugget Zone Grain Structures in High Strength Al-Alloy Friction Stir Welds during Solution Treatment,” Acta Mater., 2003, 51, pp. 1923–36.CrossRefGoogle Scholar
  19. 19.
    N.E. Dowling: Mechanical Behavior of Material, 2nd ed., Prentice Hall, 1998, p. 590.Google Scholar
  20. 20.
    S. Benavides, Y. Li, L.E. Murr, D. Brown, and J.C. McClure: “Low Temperature Friction Stir Welding of 2024 Aluminum,” Scr. Mater., 1999, 41(8), pp. 809–15.CrossRefGoogle Scholar
  21. 21.
    K.V. Jata and S.L. Semiatin: “Continuous Dynamic Recrystallization during Friction Stir Welding of High Strength Aluminum Alloys,” Scr. Mater., 2000, 43, pp. 743–49.CrossRefGoogle Scholar
  22. 22.
    I. Shigematsu, N. Saito, T. Tamaki, and G. Yamauchi: “Production of Fine Grained Aluminum Alloy by Friction Stir Processing,” Friction Stir Welding and Processing, K.V. Jata, M.W. Mahoney, R.S. Mishra, S.L. Semiatin, and D.P. Field, ed., TMS, 2001, pp. 217–24.Google Scholar
  23. 23.
    L. Litynska, R. Braun, G. Staniek, C. Dalle Donne, and J. Dutkiewicz: “TEM Study of the Microstructure Evolution in a Friction Stir Welded AlCuMgAg Alloy,” Mater. Chem. Phys., 2003, 9764, pp. 1–3.Google Scholar
  24. 24.
    G. Bussu: “Damage Tolerance of Welded Aluminum Aircraft Structure,” Ph.D. Thesis, Cranfield University, 2000.Google Scholar
  25. 25.
    C. Dalle Donne, E. Lima, J. Wegener, A. Pyzalla, and T. Buslaps: “Investigations on Residual Stress in Friction Stir Welds,” Third Int. Symp. Friction Stir Welding, Sep 27–28, 2001 (Kobe, Japan), TWI, U.K., 2001.Google Scholar
  26. 26.
    A.P. Reynolds, W. Tang, T.G. Herold, and H. Prask: “Structure, Properties, and Residual Stress of 340L Stainless Steel Friction Stir Welds,” Scr. Mater., 2003, 48, pp. 1289–94.CrossRefGoogle Scholar
  27. 27.
    L.D. Oosterkam, P.J. Webster, P.A. Browne, G.B.M. Vaughan, and P.J. Withers: “Residual Stress Field in a Friction Stir Welding Aluminum Extrusion,” Mater. Sci. Forum, 2000, 347–349, pp. 678–83.Google Scholar
  28. 28.
    R. John and K.V. Jata: “Residual Stress Effects on Near-Threshold Fatigue Crack Growth in Friction Stir Welds,” Friction Stir Welding and Processing, K.V. Jata, M.W. Mahoney, R.S. Mishra, S.L. Semiatin, and D.P. Field, ed., TMS, 2001, pp. 57–70.Google Scholar
  29. 29.
    P.J. Webster, L.D. Oosterkamp, P.A. Browne, D.J. Hughes, W.P. Kang, P.J. Withers, and G.B.M. Vaughan: “Synchrotron X-Ray Residual Strain Scanning of a Friction Stir Weld,” J. Strain Anal., 2001, 36(1), pp. 61–70.CrossRefGoogle Scholar

Copyright information

© ASM International 2006

Authors and Affiliations

  • A. Ali
    • 1
  • M. W. Brown
    • 2
  • C. A. Rodopoulos
    • 3
  • S. Gardiner
    • 4
  1. 1.Department of Mechanical and Manufacturing EngineeringThe University of Putra, SerdangSelangorMalaysia
  2. 2.Department of Mechanical EngineeringThe University of SheffieldSheffieldUnited Kingdom
  3. 3.Materials and Engineering Research InstituteSheffield Hallam UniversitySheffieldUnited Kingdom
  4. 4.Airbus UKBristolUnited Kingdom

Personalised recommendations