Journal of Thermal Spray Technology

, Volume 14, Issue 4, pp 480–486 | Cite as

Phase formation of nano-TiO2 particles during flame spraying with liquid feedstock

  • Guan-Jun Yang
  • Chang-Jiu Li
  • Yu-Yue Wang
Reviewed Papers


The nanostructured TiO2 photocatalytic coatings were synthesized through flame spraying with liquid feedstock under different conditions. The nanostructured TiO2 deposit of substantial anatase phase was annealed at different temperatures. X-ray diffraction analysis showed that significant transformation from anatase to rutile occurred at a temperature above 600 °C. However, thermal analysis suggested that the phase transformation from anatase to rutile started at a temperature from 400 to 500°C. It was found that the grain size of rutile phase was larger than that of anatase. The deposits annealed at temperatures lower than 450°C were photocatalytically active. However, the deposit annealed at 500°C, which contained 95% anatase crystalline, became photocatalytically inactive. Based on the experimental findings, a model is proposed to explain the phase transformation of the nano-TiO2 particles and the phase formation in flame-spraying of nanostructured TiO2 deposit with liquid feedstock.


flame spraying with liquid feedstock nanoparticle phase formation phase transformation photocatalytic coating TiO2 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    A. Fujishima and K. Honda, Electrochemical Photolysis of Water at a Semiconductor Electrode, Nature, 1972, 238, p 37–38CrossRefGoogle Scholar
  2. 2.
    D.F. Ollis and H. Al-Ekabi, Photocatalytic Purification and Treatment of Water and Air, Elsevier, The Netherlands, 1993Google Scholar
  3. 3.
    A. Fujishima, T.N. Rao, and D.A. Tryk, Titanium Dioxide Photocatalysis, J. Photochem. Photobiol. C, Vol 1, 2000, p 1–21CrossRefGoogle Scholar
  4. 4.
    U. Diebold, The Surface Science of Titanium Dioxide, Surf. Sci. Rep., Vol 48, 2003, p 53–229CrossRefGoogle Scholar
  5. 5.
    G-J. Yang, C-J. Li, F. Han, and A. Ohmori, Microstructure and Photocatalytic Performance of High Velocity Oxy-fuel Sprayed TiO2 Coatings, Thin Solid Films, Vol 466 (No. 1–2), 2004, p 81–85CrossRefGoogle Scholar
  6. 6.
    H.P. Maruska and A.K. Ghosh, Photocatalytic Decomposition of Water at Semiconductor Electrodes, Solar Energy, Vol 20, 1978, p 443–458CrossRefGoogle Scholar
  7. 7.
    M. Anpo, T. Shima, S. Kodama, and Y. Kubokawa, Photocatalytic Hydrogenation of CH3CCH with H2O on Small-particle TiO2: Size Quantization Effects and Reaction Intermediates, J. Phys. Chem., Vol 91, 1987, p 4305–4310CrossRefGoogle Scholar
  8. 8.
    P. Rivera, K. Tanaka, and T. Hisanaga, Photocatalytic Degradation of Pollutant over TiO2 in Different Crystal Structures, Appl. Catal. B, Vol 3, 1993, p 37–44CrossRefGoogle Scholar
  9. 9.
    C-J. Li, G-J. Yang, and Z. Wang, Effect of Spray Parameters on the Structure of Nano-Structured TiO2 Deposits by Liquid Flame Spray Process, International Thermal Spray Conference, E. Lugscheider and C.C. Berndt, Ed., DVS Deutscher Verband für Schweißen, Düsseldorf, Germany, 2002, p 544–549Google Scholar
  10. 10.
    Y-J. Kim and L.F. Francis, Microstructure and Crystal Structure Development in Porous Titania Coatings Prepared from Anhydrous Titanium Ethoxide Solutions, J. Mater. Sci., Vol 33, 1998, p 4423–4433CrossRefGoogle Scholar
  11. 11.
    C. Suresh, V. Biju, P. Mukundan, and K.G.K. Warrier, Anatase to Rutile Transformation in Sol-gel Titania by Modification of Precursor, Polyhedron, Vol 17, 1998, p 3131–3135CrossRefGoogle Scholar
  12. 12.
    B. Xia, H.Z. Huang, and Y.C. Xie, Heat Treatment on TiO2 Nanoparaticles Prepared by Vapor-phase Hydrolysis, Mater. Sci. Eng. B, Vol 57, 1999, p 150–154CrossRefGoogle Scholar
  13. 13.
    M.P. Zheng, M.Y. Gu, Y.P. Jin, H.H. Wang, P.F. Zu, P. Tao, and J.B. He, Effects of PVP on Structure of TiO2 Prepared by the Sol-gel Process, Mater. Sci. Eng. B, Vol 87, 2001, p 197–201CrossRefGoogle Scholar
  14. 14.
    J. Karthikeyan, C.C. Berndt, J. Tikkanen, J.Y. Wang, A.H. King, and H. Herman, Nanomaterial Powders and Deposits Prepared by Flame Spray Processing of Liquid Precursors, NanoStruct. Mater., Vol 8, 1997, p 61–74CrossRefGoogle Scholar
  15. 15.
    J. Karthikeyan, C.C. Berndt, J. Tikkanen, S. Reddy, and H. Herman, Plasma Spray Synthesis of Nanomaterial Powders and Deposits, Mater. Sci. Eng. A, Vol 238, 1997, p 275–286CrossRefGoogle Scholar
  16. 16.
    T. Bhatia, A. Ozturk, L. Xie, E.H. Jordan, B.M. Cetegen, M. Gell, X. Ma, and N.P. Padture, Mechanism of Ceramic Coating Deposition in Solution-Precursor Plasma Spray, J. Mater. Res., Vol 17, 2002, p 2363–2372CrossRefGoogle Scholar
  17. 17.
    C-J. Li, G-J. Yang, and Z. Wang, Formation of Nanostructured TiO2 by Flame Spraying with Liquid Feedstock, Mater. Lett., Vol 57, 2003, p 2130–2134CrossRefGoogle Scholar
  18. 18.
    G-J. Yang, C-J. Li, F. Han, and S-F. Mao, Preparation of TiO2 Photocatalyst by Thermal Spraying with Liquid Feedstock, Thermal Spray 2003: Advancing the Science and Applying the Technology, B.R. Marple and C. Moreau, Ed., ASM International, 2003, p 675–680Google Scholar
  19. 19.
    Y. Nosaka, M. Kishimoto, and J. Nishino, Factors Governing the Initial Process of TiO2 Photocatalysis Studied by Means of In-situ Electron Spin Resonance Measurements, J. Phys. Chem. B, Vol 102, 1998, p 10279–10283CrossRefGoogle Scholar
  20. 20.
    L. Jing, X. Sun, W. Cai, Z. Xu, Y. Du, and H. Fu, The Preparation and Characterization of Nanoparticle TiO2/Ti Films and Their Photocatalytic Activity, J. Phys. Chem. Solids, Vol 64, 2003, p 615–623CrossRefGoogle Scholar

Copyright information

© ASM International 2005

Authors and Affiliations

  • Guan-Jun Yang
    • 1
  • Chang-Jiu Li
    • 1
  • Yu-Yue Wang
    • 1
  1. 1.State Key Laboratory for Mechanical Behavior of Materials, School of Materials Science and EngineeringXi’an Jiaotong UniversityXi’anPeople’s Republic of China

Personalised recommendations