Journal of Thermal Spray Technology

, Volume 14, Issue 1, pp 23–30 | Cite as

Synthesis and oxidation behavior of nanocrystalline MCrAlY bond coatings

  • L. Ajdelsztajn
  • F. Tang
  • J. M. Schoenung
  • G. E. Kim
  • V. Provenzano
Reviewed Papers


Thermal barrier coating systems protect turbine blades against high-temperature corrosion and oxidation. They consist of a metal bond coat (MCrAlY, M = Ni, Co) and a ceramic top layer (ZrO2/Y2O3). In this work, the oxidation behavior of conventional and nanostructured high-velocity oxyfuel (HVOF) NiCrAlY coatings has been compared. Commercially available NiCrAlY powder was mechanically cryomilled and HVOF sprayed on a nickel alloy foil to form a nanocrystalline coating. Freestanding bodies of conventional and nanostructured HVOF NiCrAlY coatings were oxidized at 1000 °C for different time periods to form the thermally grown oxide layer. The experiments show an improvement in oxidation resistance in the nanostructured coating when compared with that of the conventional one. The observed behavior is a result of the formation of a continuous Al2O3 layer on the surface of the nanostructured HVOF NiCrAlY coating. This layer protects the coating from further oxidation and avoids the formation of mixed oxide protrusions present in the conventional coating.


high-velocity oxyfuel MCrAlY nanocrystalline coatings oxidation behavior 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    J. He, G. Han, S. Fukuyama, and K. Yokogawa, Interfaces in a Modified Inconel 718 with Compact Precipitates, Acta Mater., Vol 46 (No. 1), 1998, p 215–223CrossRefGoogle Scholar
  2. 2.
    S. Shankar, D.E. Koenig, and L.E. Dardi, Vacuum Plasma Sprayed Metallic Coatings, J. Met., Vol 33 (No. 10), 1981, p 13–20Google Scholar
  3. 3.
    J.T. DeMasi-Marcin and D.K. Gupta, Protective Coatings in the Gas Turbine Engine, Surf. Coat. Technol., Vol 68–69, 1994, p 1–9CrossRefGoogle Scholar
  4. 4.
    R.A. Miller, Thermal Barrier Coatings for Aircraft Engines: History and Directions, J. Thermal Spray Technol., Vol 6 (No. 1), 1997, p 35–42Google Scholar
  5. 5.
    H.E. Evans and M.P. Taylor, Diffusion Cells and Chemical Failure of MCrAlY Bond Coats in Thermal-Barrier Coating Systems, Oxid. Met. Vol 55 (No. 1–2), 2001, p 17–34CrossRefGoogle Scholar
  6. 6.
    J.A. Haynes, M.K. Ferber, and W.D. Porter, Thermal Cycling Behavior of Plasma-Sprayed Thermal Barrier Coatings with Various MCrAIX Bond Coats, J. Thermal Spray Technol., Vol 9 (No. 1), 2000, p 38–48CrossRefGoogle Scholar
  7. 7.
    J.R. Nicholls, N.J. Simms, W.Y Chan, and H.E. Evans, Smart Overlay Coatings: Concept and Practice, Surf. Coat. Technol., Vol 149 (No. 2–3), 2002, p 236–244CrossRefGoogle Scholar
  8. 8.
    S.M. Meier, D.M. Nissley, K.D. Sheffler, and T.A. Cruse, Thermal Barrier Coating Life Prediction Model Development, J. Eng. Gas Turb. Power, Vol 114 (No. 2), 1992, p 258–263Google Scholar
  9. 9.
    Y.H. Sohn, J.H. Kim, E.H. Jordan, and M. Gell, Thermal Cycling of EB-PVD/MCrAlY Thermal Barrier Coatings: I. Microstructural Development and Spallation Mechanisms, Surf. Coat. Technol., Vol 70 (No. 146–147), 2001, p 70–78CrossRefGoogle Scholar
  10. 10.
    Z. Liu, W. Gao, K. Dahm, and F. Wang, The Effect of Coating Grain Size on the Selective Oxidation Behaviour of Ni-Cr-Al Alloy, Scr. Mater., Vol 37 (No. 10), 1997, p 1551–1558CrossRefGoogle Scholar
  11. 11.
    Z. Liu, W. Gao, K. Dahm, and F. Wang, Oxidation Behaviour of Sputter-Deposited Ni-Cr-Al Micro-Crystalline Coatings, Acta Mater., Vol 46 (No. 5), 1998, p1691–1700CrossRefGoogle Scholar
  12. 12.
    W. Brandt, D. Toma, J. Krüger, H.J. Grabke, and G. Matthäus, The Oxidation Behaviour of HVOF Thermal-Sprayed MCrAlY Coatings, Surf. Coat. Technol., Vol 94–95, 1997, p 21–26CrossRefGoogle Scholar
  13. 13.
    W. Brandl, D. Toma, and H.J. Grabke, The Characteristics of Alumina Scales Formed on HVOF-Sprayed MCrAlY Coatings, Surf. Coat. Technol., Vol 108–109 (No. 1–3), 1998, p 10–15CrossRefGoogle Scholar
  14. 14.
    H.G. Jiang, M.L. Lau, V.L. Tellkamp, and E.J. Lavernia, Handbook of Nanostructured Materials and Nanotechnology: Synthesis and Processing, H.S. Nalwa, Ed., Academic Press, 2000, p 159–213Google Scholar
  15. 15.
    L. Ajdelsztajn, J.A. Picas, G.E. Kim, F.L. Bastian, J.M. Schoenung, and V. Provenzano, Oxidation Behavior of HVOF Sprayed Nanocrystalline NiCrAlY Powder, Mater. Sci. Eng., A, Vol A338 (No. 1–2), 2002, p 33–43Google Scholar
  16. 16.
    A. Rabiei and AG. Evans, Failure Mechanisms Associated with the Thermally Grown Oxide in Plasma-Sprayed Thermal Barrier Coatings, Acta Mater., Vol 48 (No. 15), 2000, p 3963–3976CrossRefGoogle Scholar
  17. 17.
    X. Wu, D. Weng, Z. Chen, and L. Xu, Effects of Plasma-Sprayed NiCrAl/ZrO2 Intermediate on the Combination Ability of Coatings, Surf. Coat. Technol., Vol 140 (No. 3), 2001, p 231–237CrossRefGoogle Scholar
  18. 18.
    D.F. Susan and A.R. Marder, Oxidation of Ni-Al-Base Electrodeposited Composite Coatings: II. Oxidation Kinetics and Morphology at 1000°C Marder, Oxid. Met., Vol 57 (No. 1–2), 2002, p 159–180CrossRefGoogle Scholar
  19. 19.
    D. Toma, W. Brandl, and U. Koster, The Characteristics of Alumina Scales Formed on HVOF-Sprayed MCrAlY Coatings, Oxid. Met., Vol 53 (No. 1–2), 2000, p 125–137CrossRefGoogle Scholar
  20. 20.
    D. Toma, W. Brandl, and U. Koster, Studies on the Transient Stage of Oxidation of VPS and HVOF Sprayed MCrAlY Coatings, Surf. Coat. Technol., Vol 120–121, 1999, p 8–15CrossRefGoogle Scholar
  21. 21.
    J.C. Yang, E. Schumann, I. Levin, and M. Ruhle, Transient Oxidation of NiAl, Acta Mater., Vol 46 (No. 6), 1998, p 2195–2201CrossRefGoogle Scholar
  22. 22.
    G. Muller, G. Schumacher, and D. Straub, Oxide Scale Growth on MCrAlY Coatings after Pulsed Electron Beam Treatment, Surf. Coat. Technol., Vol 108–109 (No. 1–3), 1998, p 43–47CrossRefGoogle Scholar
  23. 23.
    D. Strauss, G. Muller, G. Schumacher, V. Engelko, W. Stamm, D. Clemens, and W.J. Quaddakers, Oxide Scale Growth on MCrAlY Bond Coatings after Pulsed Electron Beam Treatment and Deposition of EBPVD-TBC, Surf. Coat. Technol., Vol 135 (No. 2–3), 2001, p 196–201CrossRefGoogle Scholar
  24. 24.
    R.J. Perez, B. Huang, and E.J. Lavernia, Thermal Stability of Nanocrystalline Fe-10 wt.% Al Produced by Cryogenic Mechanical Alloying, Nanostruct. Mater., Vol 7 (No. 5), 1996, p 565–572CrossRefGoogle Scholar

Copyright information

© ASM International 2005

Authors and Affiliations

  • L. Ajdelsztajn
    • 1
  • F. Tang
    • 1
  • J. M. Schoenung
    • 1
  • G. E. Kim
    • 2
  • V. Provenzano
    • 3
  1. 1.Department of Chemical Engineering and Materials ScienceUniversity of CaliforniaDavis
  2. 2.Perpetual TechnologiesMontrealCanada
  3. 3.National Institute of Standards and TechnologyGaithersburg

Personalised recommendations