Journal of Thermal Spray Technology

, Volume 13, Issue 2, pp 265–273 | Cite as

Analysis of tantalum coatings produced by the kinetic spray process

  • T. Van Steenkiste
  • D. W. Gorkiewicz
Reviewed Papers

Abstract

Tantalum (Ta) coatings have been produced using a relatively new process, kinetic spray. Ta starting powders having particle diameters greater than 65 µm are injected into a de Laval-type nozzle, entrained in a supersonic gas stream, and accelerated to high velocities due to drag effects. The particles’ kinetic energy is transformed via plastic deformation into strain and heat on impact with the substrate surface. Particles are not thermally softened or melted, producing relatively low oxide, reduced residual stress, high adhesion and low porosity coatings. Analysis of the mechanical and physical properties of these Ta coatings demonstrated increasing hardness, cohesive adhesion, and decreasing porosity as a function of particle velocity. Comparison between kinetically sprayed coatings and coatings produced using conventional coating methods will be discussed.

Keywords

coatings cold spray kinetic spray tantalum 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    T.H. Van Steenkiste, J.R. Smith, and R.E. Teets: “Aluminum Coatings Via Kinetic Spray With Relatively Large Powder Particles,” Surf. Coat. Technol., 2002, 154, pp. 237–52.CrossRefGoogle Scholar
  2. 2.
    Anon., ASM Metals Handbook, Vol. 2, Properties and Selection: Nonferrous Alloys and Special-Purpose Materials, ASM International, Materials Park, OH, 1990.Google Scholar
  3. 3.
    T. Kinos, S.L. Chen, P. Siitonen, P. Kettunen: “Densification of Plasma-Sprayed Titanium and Tantalum Coatings,” J. Therm. Spray Technol., 1996, 4, pp. 439–44.CrossRefGoogle Scholar
  4. 4.
    S.L. Lee, M. Cipollo, D. Windover, and C. Rickard: “Analysis of Magnetron-Sputtered Tantalum Coatings versus Electrochemically Deposited Tantalum from Molten Salt,” Surf. Coat. Technol. 1999, 120–121, pp. 44–52.CrossRefGoogle Scholar
  5. 5.
    C. Hayes, J.L. Watson, and J.P. Walker: “Tantalum Coatings for the Petrochemical Industry” in Thermal. Spray Science and Technology, C.C. Berndt and S. Sampath, ed., ASM International, Materials Park, OH, 1995, pp. 589–93.Google Scholar
  6. 6.
    T.H. Van Steenkiste, J.R. Smith, R.E. Teets, J.J. Moleski, D.W. Gorkiewicz, R.P. Tison, D.R. Marantz, K.A. Kowalsky, W.L. Riggs, P.H. Zajchowski, B. Pilsner, R.C. McCune, and K.J. Barnett: “Kinetic Spray Coatings,” Surf. Coat. Technol., 1999, 111, pp. 62–71.CrossRefGoogle Scholar
  7. 7.
    T.H. Van Steenkiste, J.R. Smith, R.E. Teets, J.J. Moleski, and D.W. Gorkiewicz, U.S. Patent 6 139 913, Kinetic Spray Coating Method and Apparatus (Oct. 31, 2000)Google Scholar
  8. 8.
    J.R. Smith, T.H. Van Steenkiste, and W.J. Meng, U.S. Patent 6 189 663, Spray Coatings for Suspension Damper Rods (Feb. 20, 2001).Google Scholar
  9. 9.
    G.H. Smith, N.Y. Kenmore, R.C. Eschenbach, and J.F. Pelton, U.S. Patent 2 861 900, Jet Plating of High Melting Point Materials (Nov. 25, 1958).Google Scholar
  10. 10.
    C.F. Rocheville, U.S. Patent 3 100 724, Device for Treating the Surface of a Workpiece (Aug. 13, 1963).Google Scholar
  11. 11.
    J.A. Browning: “What If We’re Right?” in Thermal Spray: A United Forum for Scientific and Technological Advances, C.C. Berndt ed., ASM International, Materials Park, OH, 1997, pp. 15–18.Google Scholar
  12. 12.
    J.A. Browning, U.S. Patent 5 271 96, Thermal Spray Method Utilizing In-Transit Powder Particle Temperatures Below Their Melting Point (Dec. 21, 1993).Google Scholar
  13. 13.
    A.P. Alkimov, V.F. Kosarev, A.N. Papyrin: “A Method of Cold Gas-Dynamic Deposition,” Dokl. Akad. Nauk,SSSR., 1062, 318, 1990.Google Scholar
  14. 14.
    A.P. Alkhimov, A.N. Papyrin, V.F. Kosarev, N.I. Nesterovich, and M.M. Shushpanov, U.S. Patent 5 302 414, Gas Dynamic Spraying Method for Appling a Coating (April 12, 1994).Google Scholar
  15. 15.
    R.C. McCune, A.N. Papyrin, J.N. Hall, W.L. Riggs II, and P.H. Zajchowski: “An Exploration of the Cold Gas-Dynamic Spray Method for Several Materials Systems” in Thermal Spray Science & Technology, C.C. Berndt and S. Sampath, ed., ASM International, Materials Park, OH, 1995, pp. 1–5.Google Scholar
  16. 16.
    R.C. McCune, W.T. Donlon, E.L. Cartwright, A.N. Papyrin, E.F. Rybicki, and J.R. Shadley: “Characterization of Copper and Steel Coatings Made by the Cold Gas-Dynamic Spray Method” Thermal Spray: Practical Solutions for Engineering Problems, C.C. Berndt, ed., ASM International, Materials Park, OH, 1996, pp. 397–403.Google Scholar
  17. 17.
    R.C. Dykhuizen and M.F. Smith: “Gas Dynamic Principles of Cold Spray,” J. Therm. Spray Technol., 1998, 7, pp. 205–12.CrossRefGoogle Scholar
  18. 18.
    M.F. Smith, J.E. Brockmann, R.C. Dykhuizen, D.L. Gilmore, R.A. Neiser, and T.J. Romer: “Cold Spray Direct Fabrication-High Rate, Solid State, Material Consolidation,” in Freeform, and Additive Fabrication, D. Dimos, S.C. Danforth, and M. Cima, ed., Materials Research Society, Warrendale, PA, 1999, pp. 65–76.Google Scholar
  19. 19.
    R.C. Dykhuizen, M.F. Smith, D.L. Gilmore, R.A. Neiser, X. Jiang, and S. Sampath: “Impact of High Velocity Cold Spray Particles,” J. Therm. Spray Technol., 1999, 8, p. 559.CrossRefGoogle Scholar
  20. 20.
    D.L. Gilmore, R.C. Dykhuizen, R.A. Neiser, T.J. Roemer, and M.F. Smith: “Particle Velocity and Deposition Efficiency in the Cold Spray Process,” J. Therm. Spray Technol., 1999, 8, p. 576.CrossRefGoogle Scholar
  21. 21.
    M. Jacobson, A.R. Cooper, and J. Nagy, Explosibility of Metal Powders U.S. Bureau of Mines, Washington, DC, RI 5624, 1960.Google Scholar

Copyright information

© ASM International 2004

Authors and Affiliations

  • T. Van Steenkiste
    • 1
  • D. W. Gorkiewicz
    • 1
  1. 1.Delphi Research LaboratoriesShelby Township

Personalised recommendations