Skip to main content
Log in

Numerical study of the relative importance of turbulence, particle size and density, and injection parameters on particle behavior during thermal plasma spraying

  • Published:
Journal of Thermal Spray Technology Aims and scope Submit manuscript

Abstract

Numerical modeling is used to systematically examine the effects of turbulence, injection, and particle characteristics on particle behavior during thermal plasma spraying. Using the computer program LAVA (Idaho National Engineering and Environmental Laboratory, Idaho Falls, ID), a steady-state plasma jet typical of a commercial torch at normal operating conditions is first developed. Then, assuming a single particle composition (ZrO2) and injection location, real world complexity (e.g., turbulent dispersion, particle size and density, injection velocity, and direction) is introduced “one phenomenon at a time” to distinguish and characterize its effect and enable comparisons of separate effects. A final calculation then considers all phenomena simultaneously, to enable further comparisons. Investigating each phenomenon separately provides valuable insight into particle behavior. For the typical plasma jet and injection conditions considered, particle dispersion in the injection direction is most significantly affected by (in order of decreasing importance): particle size distribution, injection velocity distribution, turbulence, and injection direction distribution or particle density distribution. Only the distribution of injection directions and turbulence affect dispersion normal to the injection direction and are of similar magnitude in this study. With regards to particle velocity and temperature, particle size is clearly the dominant effect.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. L. Pawlowski: The Science and Engineering of Thermal Spray Coatings, Wiley, New York, NY, 1995.

    Google Scholar 

  2. “Thermal Spraying, Current Status and Future Trends,” Proc. 14th Int. Thermal Spray Conf., A. Ohmori, ed., High Temperature Society of Japan, Osaka, 1995.

    Google Scholar 

  3. Thermal Spray: Practical Solutions for Engineering Problems, C.C. Berndt, ed., ASM International, Materials Park, OH, 1996.

    Google Scholar 

  4. Thermal Spray: A United Forum for Scientific and Technological Advances, C.C. Berndt, ed., ASM International, Materials Park, OH, 1997.

    Google Scholar 

  5. A. Vardelle, P. Fauchais, B. Dussoubs, and N.J. Themelis: Plasma Chem. Plasma Processing, 1998, 18, pp. 551–74.

    Article  CAS  Google Scholar 

  6. R. McPherson: Thin Solid Films, 1981, 83, pp. 297–310.

    Article  CAS  Google Scholar 

  7. P. Fauchais, A. Vardelle, M. Vardelle, L. Bianchi, and A.C. Leger: Plasma Chem. Plasma Processing, 1996, 16, pp. 99S-126S.

    Article  CAS  Google Scholar 

  8. L. Bianchi, A. Grimaud, F. Blein, P. Lucchese, and P. Fauchais: J. Thermal Spray Technol., 1995, 4, pp. 59–66.

    CAS  Google Scholar 

  9. J.K. Dukowicz: J. Comput. Phys., 1980, 35, pp. 229–53.

    Article  MATH  ADS  MathSciNet  Google Scholar 

  10. P.J. O’Rourke: J. Comput. Phys., 1989, 83, pp. 345–60.

    Article  MATH  ADS  CAS  MathSciNet  Google Scholar 

  11. A.A. Amsden, J.D. Ramshaw, P.J. O’Rourke, and J.K. Dukowicz: “KIVA: A Computer Program for Two- and Three-Dimensional Fluid Flows with Chemical Reactions and Fuel Sprays,” Los Alamos National Laboratory Report No. LA-10245-MS, Los Alamos National Laboratory, Los Alamos, NM, 1985.

    Google Scholar 

  12. J.D. Ramshaw and C.H. Chang: Plasma Chem. Plasma Processing, 1992, 12, pp. 299–325.

    Article  CAS  Google Scholar 

  13. C.H. Chang and J.D. Ramshaw: Phys. Plasmas, 1994, 1, pp. 3698–708.

    Article  ADS  CAS  Google Scholar 

  14. Y.P. Wan, V. Prasad, G.-X. Wang, S. Sampath, and J.R. Fincke: Proc. ASME Heat Transfer Division, R.A. Nelson, ed., ASME, New York, NY, 1998, 4, pp. 66–77.

    Google Scholar 

  15. C.H. Chang: Thermal Spray: International Advances in Coatings Technology, ASM International, Materials Park, OH, 1992, pp. 793–98.

    Google Scholar 

  16. B. Dussoubs: Ph.D. Dissertation, Universite de Limoges, Limoges, France, 1998.

    Google Scholar 

  17. J.R. Fincke, W.D. Swank, and D.C. Haggard: in Thermal Spray: Surface Engineering via Applied Research, C.C. Berndt, ed., ASM International, Materials Park, OH, 2000, pp. 9–14.

    Google Scholar 

  18. S. Snyder, L. Reynolds, G. Lassahn, J. Fincke, and C. Shaw: Phys. Rev. E., 1993, 47, pp. 1996–2005.

    Article  ADS  CAS  Google Scholar 

  19. J.R. Fincke, C.H. Chang, W.D. Swank, and D.C. Haggard: Int. J. Heat Mass Transfer, 1994, 37(11), pp. 1673–82.

    Article  Google Scholar 

  20. M.A. Leschziner and W. Rodi: AIAA J., 1984, 22(12), pp. 1742–47.

    Article  MATH  ADS  Google Scholar 

  21. J.R. Fincke, W. Swank, and D. Haggard: in Thermal Spray: United Forum for Scientific and Technological Advances, C.C. Berndt, ed., ASM International, Materials Park, OH, 1997, pp. 335–42.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Williamson, R.L., Fincke, J.R. & Chang, C.H. Numerical study of the relative importance of turbulence, particle size and density, and injection parameters on particle behavior during thermal plasma spraying. J Therm Spray Tech 11, 107–118 (2002). https://doi.org/10.1361/105996302770349041

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1361/105996302770349041

Keywords

Navigation