Journal of Thermal Spray Technology

, Volume 9, Issue 1, pp 59–67 | Cite as

Development of refractory silicate-yttria-stabilized zirconia dual-layer thermal barrier coatings

  • Yirong He
  • Kang N. Lee
  • Surendra Tewari
  • Robert A. Miller


Development of advanced thermal barrier coatings (TBCs) is the most promising approach for increasing the efficiency and performance of gas turbine engines by enhancing the temperature capability of hot section metallic components. Spallation of the yttria-stabilized zirconia (YSZ) top coat, induced by the oxidation of the bond coat coupled with the thermal expansion mismatch strain, is considered to be the ultimate failure mode for current state-of-the-art TBCs. Enhanced oxidation resistance of TBCs can be achieved by reducing the oxygen conductance of TBCs below that of thermally grown oxide (TGO) alumina scale. One approach is incorporating an oxygen barrier having an oxygen conductance lower than that of alumina scale. Mullite, rare earth silicates, and glass ceramics have been selected as potential candidates for the oxygen barrier. This paper presents the results of cyclic oxidation studies of oxygen barrier/YSZ dual-layer TBCs.


TBC mullite silicates oxygen barrier APS sputtering small particle plasma spray 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    W.P. Parks, E.E. Hoffman, W.Y. Lee, and I.G. Wright: Proc. Thermal Barrier Coating Workshop, NASA Conference Publication 3312, NASA, Washington, DC, 1995, pp. 35–47.Google Scholar
  2. 2.
    R.A. Miller and C.E. Lowell: Thin Solid Films, 1982, vol. 95, pp. 265–73.CrossRefGoogle Scholar
  3. 3.
    R.A. Miller: J. Am. Ceram. Soc., 1984, vol. 67, pp. 517–21.CrossRefGoogle Scholar
  4. 4.
    R.A. Miller: Proc. Thermal Barrier Coating Workshop, NASA Conference Publication 3312, NASA, Washington, DC, 1995, pp. 17–34.Google Scholar
  5. 5.
    J. Schaeffer: Proc. TBC Interagency Coordination Committee, Cincinnati, OH, May 19–21, 1997, pp. 99–108.Google Scholar
  6. 6.
    B.A. Pint, I.G. Wright, W.Y. Lee, Y. Zhang, K. Prußner, K.B. Alexander: Mater. Sci. Eng. 1998, vol. A245, pp. 201–11.Google Scholar
  7. 7.
    J. Sun, E. Chang, and B. Wu: Mater. Trans. JIM, 1993, vol. 34 (7), pp. 614–31.Google Scholar
  8. 8.
    K.G. Schmitt-Thomas, U. Dietl, and H. Haindl: Ind. Ceram., 1996, vol. 16 (3), pp. 195–98.Google Scholar
  9. 9.
    G.C. Chang, W.A. Phucharoen, and R.A. Miller: Surface Coating Technol., 1987, vol. 30, pp. 13–28.CrossRefGoogle Scholar
  10. 10.
    W.A. Phucharoen: Ph.D. Dissertion, Cleveland State University, Cleveland, OH, 1990.Google Scholar
  11. 11.
    A.M. Freborg, B.L. Ferguson, W.J. Brindley, And G.J. Petrus: Mater. Sci. Eng., 1998, vol. A245, pp. 182–90.Google Scholar
  12. 12.
    J. Cheng, E.H. Jordan, B. Barber, and M. Gell: Acta Mater., 1998, vol. 46 (16), pp. 5839–50.CrossRefGoogle Scholar
  13. 13.
    O.C. Brandt: J. Thermal Spraying Technol., 1995, vol. 4 (2), pp. 147–52.Google Scholar
  14. 14.
    D. Lee: J. Thermal Spray Technol., 1995, vol. 4 (3), pp. 229–34.Google Scholar
  15. 15.
    H. van Esch and W. Greaves: Proc. Int. Gas Turbine and Aeroengine Congr. and Exhib., Birmingham, United Kingdom, June 10–13, ASME, New York, NY, 1996, pp. 1–5.Google Scholar
  16. 16.
    Advanced Materials and Processes: Metallurgia, 1995, vol. 62 (3), pp. 136.Google Scholar
  17. 17.
    K.N. Lee, R.A. Miller, and N.S. Jacobson: J. Am. Ceram. Soc., 1995, vol. 78 (3), pp. 705–10.CrossRefGoogle Scholar
  18. 18.
    G.N. Heintz and U. Uematsu: Surface Coating Technol., 1992, vol. 50, pp. 213–22.CrossRefGoogle Scholar
  19. 19.
    C.E. Curtis and H.G. Sowman: J. Am. Ceram. Soc., vol. 36, 1953, pp. 190.CrossRefGoogle Scholar

Copyright information

© ASM International 2000

Authors and Affiliations

  • Yirong He
    • 1
  • Kang N. Lee
    • 1
  • Surendra Tewari
    • 1
  • Robert A. Miller
    • 2
  1. 1.Cleveland State UniversityCleveland
  2. 2.NASA Glenn Research CenterCleveland

Personalised recommendations