A comparative study of mechanical alloying and mechanical milling of Nd8Fe88B4

  • Q. Zeng
  • Y. F. Xiao
  • X. B. Liu
  • S. Z. Dong
  • Y. S. Deng
  • Z. Y. Zhang
  • R. Wang


A comparative study was made of structure and magnetic properties of Nd8Fe88B4 prepared by mechanical alloying (MA) using elemental powders as starting materials and by mechanical milling (MM) of the alloy. X-ray diffraction (XRD) and differential scanning calorimetry (DSC) combined with transmission electron microscopic (TEM) studies revealed that both milling procedures resulted in a mixture of α-Fe and an amorphous phase. The thermal stability of the as-milled powders produced by MA was comparable to that of the as-milled powders produced by MM. Heat treatment of the milled powders above the crystallization temperature resulted in the formation of a nanocrystalline mixture of Nd2Fe14B and α-Fe, but annealed MA powders demonstrated a somewhat coarser structure in comparison with annealed MM powders. Therefore, higher remanences and coercivities were obtained by MM.


mechanical alloying mechanical milling nanocrystalline materials Nd-Fe-B alloys permanent magnets 


  1. 1.
    J.S. Benjamin, Metall. Trans., Vol 1, 1970, p 2954Google Scholar
  2. 2.
    C.C. Koch, Annu. Rev. Mat. Sci., Vol 15, 1989, p 121CrossRefGoogle Scholar
  3. 3.
    L. Schultz, K. Schnitzke, J. Wecker, M. Katter, and C. Kuhrt, J. Appl. Phys., Vol 70, 1991, p 6339CrossRefGoogle Scholar
  4. 4.
    T. Harada and T. Kuji, J. Appl. Phys., Vol 72, 1992, p 5443CrossRefGoogle Scholar
  5. 5.
    Y.S. Cho and C.C. Koch, J. Alloys Comp., Vol 61, 1987, p 3583Google Scholar
  6. 6.
    L. Schultz, J. Wecker, and E. Hellstern, J. Appl. Phys., Vol 61, 1987, p 3583CrossRefGoogle Scholar
  7. 7.
    T. Harada and T. Kuji, J. Alloys Comp., 1996, Vol 232, 1996, p 238CrossRefGoogle Scholar
  8. 8.
    G. Veitl, B. Scholz, and H.D. Kunze, Mater. Sci. Eng. A, Vol 134, 1991, p 1410CrossRefGoogle Scholar
  9. 9.
    K. Sakurai, Y. Yamada, C.H. Lee, T. Fukunaga, and U. Mizutani, Mater. Sci. Eng. A, Vol 134, 1991, p 1414CrossRefGoogle Scholar
  10. 10.
    A.R. Yavari and P.J. Desre, Mater. Sci. Forum, Vol 43, 1992, p 89–90Google Scholar
  11. 11.
    L. Schultz and J. Wecker, Mater. Sci. Eng., Vol 99, 1988, p 127CrossRefGoogle Scholar
  12. 12.
    W. Gong, G.C. Hadjipanayis, and R.F. Krause, J. Appl. Phys., Vol 75, 1994, p 6649CrossRefGoogle Scholar
  13. 13.
    J. Ding, P.G. McCormick, and R. Street, J. Magn. Magn. Mater., Vol 1, 1993, p 124Google Scholar
  14. 14.
    R. Coehoorn, D.B. Mooij, and C.D.E. Waard, J. Magn. Magn. Mater., Vol 80, 1989, p 101CrossRefGoogle Scholar
  15. 15.
    A. Manaf, R.A. Buckley, H.A. Davies, and Leonowicz, J. Magn. Magn. Mater., Vol 101, 1991, p 360CrossRefGoogle Scholar
  16. 16.
    T. Schrefl, R. Fischer, J. Fidler, and H. Kronmuller, J. Appl. Phys., Vol 76, 1994, p 7053CrossRefGoogle Scholar
  17. 17.
    E.F. Kneller and R. Hawig, IEEE Trans. Magn. MAG-27, 1991, p 3588Google Scholar
  18. 18.
    L. Schultz et al., Mater. Sci. Eng., Vol 97, 1988, p 127Google Scholar
  19. 19.
    R.M. Davis, B. McDermott, and C.C. Koch, Metall. Trans. A, Vol 19, 1988, p 2867CrossRefGoogle Scholar
  20. 20.
    Ch. Kuhrt and L. Schultz, J. Appl. Phys., Vol 71, 1992, p 1896CrossRefGoogle Scholar
  21. 21.
    W.F. Miao, J. Ding, P.G. McCormick, and R. Street, J. Appl. Phys., Vol 79, 1996, p 2079CrossRefGoogle Scholar
  22. 22.
    J.M.D. Coey, J. Magn. Magn. Mater., Vol 1041, 1995, p 140–144Google Scholar

Copyright information

© ASM International 1999

Authors and Affiliations

  • Q. Zeng
    • 1
  • Y. F. Xiao
    • 2
  • X. B. Liu
    • 2
  • S. Z. Dong
    • 2
  • Y. S. Deng
    • 2
  • Z. Y. Zhang
    • 2
  • R. Wang
    • 2
  1. 1.Beijing Institute of Aeronautical MaterialsBeijingChina
  2. 2.Institute of Materials Science and EngineeringUniversity of Science and Technology BeijingBeijingChina

Personalised recommendations