Advertisement

Laser welding of 3 mm thick laser-cut AISI 304 stainless steel sheet

  • Harish Kumar
  • P. Ganesh
  • Rakesh Kaul
  • B. Tirumala Rao
  • Pragya Tiwari
  • A. K. Nath
  • Ranjeet Brajpuriya
  • S. M. Chaudhari
Processing

Abstract

The objective of the present work was to study the laser weldability of laser-cut 3 mm thick AISI 304 austenitic stainless steel sheet (using oxygen as an assist gas). For minimizing heat input during laser cutting, which is an important factor influencing the thickness of the oxide layer on the cut surface, laser cutting was performed in pulsed mode. The results of the study demonstrated that although the laser welding of laser-cut specimens did not result in the formation of weld defects, the resultant laser weldments exhibited reduced ductility with respect to base metal and bead-on-plate laser weldments. Laser-cut and laser-welded specimens also displayed higher notch sensitivity than the base metal. However, laser-cut and laser-welded specimens still possessed enough ductility to pass guided bend tests.

Keywords

austenitic stainless steel CO2 laser laser cutting laser welding 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    S.E. Nielsen and G. Broden, Improved Weldability of Stainless Steel Cut by Laser, Power Beam Technology, J.D. Russell, Ed., September 10–12, 1986 (Brighton, U.K.), The Welding Institute, Proc. Int. Conf., 1987, p 256–267Google Scholar
  2. 2.
    P.A. Molian, Laser Cutting of Thick Metallic Solids—A Reactive Gas Flow Approach, Laser Advanced Materials Processing (LAMP) (Osaka, Japan), High Temperature Society of Japan and Japan Laser Processing Society, Proc. Int. Conf., May 21–23, 1987, p 245–250Google Scholar
  3. 3.
    A. Ivarson, J. Powell, and C. Magnusson, The Role of Oxidation in Laser Cutting Stainless Steel and Mild Steel, J. Laser Appl., 1991, 3 (3), p 41–45Google Scholar
  4. 4.
    A. Ivarson, J. Powell, and C. Magnusson, Laser Cutting of Steels: Analysis of the Particles Ejected during Laser Cutting, Weld. World, 1992, 30 (5/6), p 116–125Google Scholar
  5. 5.
    W. Bolton, Newnes Engineering Materials Pocket Book, Heinemann-Newnes, 1990Google Scholar
  6. 6.
    W.M. Steen, Laser Material Processing, 2nd ed., Springer Verlag, 1998, p 115–116Google Scholar
  7. 7.
    J. Powell and I. Menzies, Metallurgical Implications of Laser Cutting Stainless Steel: Power Beam Technology, J.D. Russell, Ed., September 10–12, 1986 (Brighton, U.K.), The Welding Institute, Proc. Int. Conf. 1987, p 269–284Google Scholar
  8. 8.
    J. Powell, CO 2 Laser Cutting, Springer-Verlag, 1993, p 57–65, 211–215Google Scholar
  9. 9.
    J. Powell, Laser Cutting of Metals: LIA Handbook of Laser Materials Processing, 1st ed., J.F. Ready, Ed., Magnolia Publishing Inc., 2001, p 443–444Google Scholar
  10. 10.
    B.T. Rao, R.K. Sinha, and A.K. Nath, Optimization of Si-steel Cutting with CO2 Laser, Metals Mater. Proc., 2002, 14 (2), p 145–154Google Scholar
  11. 11.
    A.K. Nath, L. Abhinandan, and P. Choudhary, Characteristics of a Pulse-sustained dc-Excited Transverse-Flow cw CO2 Laser of 1.5-kW Output Power, Opt. Eng., 1994, 33 (6), p 1889–1893CrossRefADSGoogle Scholar
  12. 12.
    C.P. Paul, H. Kumar, T. Reghu, P. Bhargava, and A.K. Nath, Enhancement of Output Power in a 5 kW Transverse Flow CW CO2 Laser, DAE-BRNS National Laser Symposium, Allied Publishers Ltd., December 2001, p 51–52Google Scholar
  13. 13.
    J. Khare, R. Sridhar, C.P. Paul, T. Reghu, and A.K. Nath, Operational Characteristics and Power Scaling of a Transverse Flow Transversely Excited CW CO2 Laser, Pramana, 2003, 60 (1), p 99–107ADSGoogle Scholar
  14. 14.
    A. Bharti and R. Sivakumar, The Mechanism of Material Removal in Laser Fusion Cutting, Lasers Eng., 1996, 5 (2), p 87–105Google Scholar
  15. 15.
    XPS analysis data fitting shareware program; www.icg.nsrrc.org.twGoogle Scholar
  16. 16.
    D.A. Shirley, High-resolution X-Ray Photoemission Spectrum of the Valence Bands of Gold, Phys. Rev. B: Condens. Matter, 1972, 5, p 4709–4714ADSGoogle Scholar
  17. 17.
    Boiler and Pressure Vessel Code, Section IX: Welding and Brazing Qualification, ASME, 1986, p QW-151, QW-462Google Scholar
  18. 18.
    J.R. Davis, Ed., ASM Handbook, 2nd ed. ASM International, 1998, p 1214Google Scholar
  19. 19.
    G.E. Dieter, Mechanical Metallurgy, McGraw-Hill, 1988, p 314–316Google Scholar
  20. 20.
    R.W. Hertzberg, Deformation and Fracture Mechanics of Engineering Materials, 4th ed., John Wiley & Sons, Inc., 1996, p 295–297, 342–345Google Scholar
  21. 21.
    ‘Standard Method for Guided Bend Test for Ductility of Welds,” E 190–92, Annual Book of ASTM Standards, ASTM, 1992Google Scholar

Copyright information

© ASM International 2006

Authors and Affiliations

  • Harish Kumar
    • 1
  • P. Ganesh
    • 1
  • Rakesh Kaul
    • 1
  • B. Tirumala Rao
    • 1
  • Pragya Tiwari
    • 1
  • A. K. Nath
    • 1
  • Ranjeet Brajpuriya
    • 2
  • S. M. Chaudhari
    • 2
  1. 1.Industrial CO2 Laser Section, Synchrotron Utilization DivisionCentre for Advanced TechnologyIndoreIndia
  2. 2.University Grants Commission-Department of Atomic Energy Consortium for Scientific ResearchIndoreIndia

Personalised recommendations