Dual-environment effects on the oxidation of metallic interconnects

  • Gordon R. Holcomb
  • Malgorzata Ziomek-Moroz
  • Stephen D. Cramer
  • Bernard S. CovinoJr.
  • Sophie J. Bullard
Fuel Cell Technology

Abstract

Metallic interconnects in solid oxide fuel cells are exposed to a dual environment: fuel on one side (i.e., H2 gas) and oxidizer on the other side (i.e., air). It has been observed that the oxidation behavior of thin stainless steel sheet in air is changed by the presence of H2 on the other side of the sheet. The resulting dual-environment scales are flaky and more friable than the single-environment scales. The H2 disrupts the scale on the air side. A model to explain some of the effects of a dual environment is presented where hydrogen diffusing through the stainless steel sheet reacts with oxygen diffusing through the scale to form water vapor, which has sufficient vapor pressure to mechanically disrupt the scale. Experiments on preoxidized 316L stainless steel tubing exposed to air-air, H2-air, and H2-Ar environments are reported in support of the model.

Keywords

dual environment hydrogen interconnect oxidation solid oxide fuel cell stainless steel 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    P. Singh and Z.G. Yang, “Thermochemical Analysis of Oxidation and Corrosion Processes in High Temperature Fuel Cells,” 131st TMS Annual Meeting (Seattle, WA), February 2002.Google Scholar
  2. 2.
    J.W. Stevenson, Z.G. Yang, P. Singh, and G.H. Meier, “Corrosion and Corrosion Processes in SOFC Power Generation Systems,” 1st Int. Conf. on Fuel Cell Development and Deployment (Storrs, CT), March 2004.Google Scholar
  3. 3.
    M. Ziomek-Moroz, B.S. Covino Jr., S.D. Cramer, G.R. Holcomb, S.J. Bullard, and P. Singh, “Corrosion of Stainless Steel in Simulated Solid Oxide Fuel Cell Interconnect Environments,” Paper 04534, presented at Corrosion/2004, NACE International (Houston, TX), 2004Google Scholar
  4. 4.
    M. Ziomek-Moroz, B.S. Covino Jr., S.D. Cramer, G.R. Holcomb, S.J. Bullard, P. Singh, and C.F. Windisch Jr., “Study of Scale Formation on AISI 316L in Simulated Solid Oxide Fuel Cell Bipolar Environments,” 29th Int. Technical Conf. on Coal Utilization and Fuel Systems, 2004Google Scholar
  5. 5.
    G.R. Holcomb, “The High Temperature Oxidation of Hafnium Carbide,” Ph.D. Thesis, Ohio State University, Columbus, OH, 1988Google Scholar
  6. 6.
    A. Roine, HSC Chemistry 5.11, Outokumpu Research Oy, Pori, Finland, 2002Google Scholar
  7. 7.
    P. Kofstad, High Temperature Corrosion, Elsevier Applied Science, New York, 1988, p 116–120Google Scholar
  8. 8.
    L.C. Walters and R.E. Grace, Self Diffusion of Cr51 in Single Crystals of Cr2O3, J. Appl. Phys., 1965, 8, p 2331–2332CrossRefGoogle Scholar
  9. 9.
    K.P. Lillerud and P. Kofstad, Reoxidation of Chromium with Densified Cr2O3 Scales, Oxid. Met., 1982, 17, p 127–139CrossRefGoogle Scholar
  10. 10.
    Z. Yang, G. Xia, P. Singh, and J.W. Stevenson, Pacific Northwest National Laboratory, Richland, WA, private communication, 2004Google Scholar
  11. 11.
    D.E. Alman and P.D. Jablonski, Low Coefficient of Thermal Expansion (CTE) Nickel Base Superalloys for Interconnect Applications in Intermediate Temperature Solid Oxide Fuel Cells (SOFC), Superalloys 2004, TMS, 2004, p 617–622Google Scholar
  12. 12.
    R. Yamamoto, Y. Kadoya, H. Kawai, R. Magoshi, T. Noda, S. Hamano, S. Ueta, and S. Isobe, New Wrought Ni-Based Superalloys with Low Thermal Expansion for 700C Steam Turbines, Materials of Advanced Power Engineering–2002, Proc. 7th Liege Conf. Energy and Technology, Forschungszentrum Jülich GmbH Inst. für Werkstoffe und Verfahren der Energietechnik, 2002, Vol. 21Google Scholar
  13. 13.
    J. Völkl and G. Alefeld, Diffusion of Hydrogen in Metals, Topics in Applied Physics—Hydrogen in Metals I, Springer-Verlag, New York, 1978, p 326–329Google Scholar

Copyright information

© ASM International 2006

Authors and Affiliations

  • Gordon R. Holcomb
    • 1
  • Malgorzata Ziomek-Moroz
    • 1
  • Stephen D. Cramer
    • 1
  • Bernard S. CovinoJr.
    • 1
  • Sophie J. Bullard
    • 1
  1. 1.National Energy Technology LaboratoryAlbany

Personalised recommendations