Advertisement

The effect of α phase on the deformation mechanisms of β titanium alloys

  • A. Jaworski
  • S. Ankem
Article

Abstract

The effects of α and β phase interactions on the tensile and creep deformation behavior of β titanium alloys was studied using Ti-6.0wt.% Mn and Ti-8.1wt.%V as the model two-phase alloys, and Ti-13.0wt.%Mn and Ti-14.8wt.%V as the single-phase β alloys. The β phase of α-βTi-8.1V deforms by stress-induced hexagonal martensite (α′), while slip and twinning occurs in the single-phase β alloy with the same chemistry as the β phase. No stress-induced martensite was observed in the β or α-βTi-Mn alloys. This behavior is modeled in terms of a number of factors, including elastic interaction stresses between the α and β phases, coherency between the α phase and hexagonal martensite, and β phase stability.

Keywords

elastic interaction stresses stress-induced martensite titanium transmission electron microscopy twinning 

References

  1. 1.
    M.J. Philippe, Deformation Mechanisms and Mechanical Properties in α, α + β, and β Titanium Alloys: A Review,Proc. of the 8th International Conference on Titanium-95: Science and Technology, P.A. Blenkinsop and H.M. Flower, Ed., The Institute of Materials, London, 1996, p 956–963Google Scholar
  2. 2.
    T.S. Kuan, R.R. Ahrens, and S.L. Sass, The Stress-Induced Omega Phase Transformation in Ti-V Alloys,Metall. Trans. A, Vol 6 (No. 9), 1975, p 1767–1774CrossRefGoogle Scholar
  3. 3.
    S. Ankem and H. Margolin, Alpha-Beta Interface Sliding in Ti-Mn Alloys,Metall. Trans. A, Vol 14 (No. 3), 1983, p 500–503Google Scholar
  4. 4.
    K.M. Knowles, A High Resolution Electron Microscope Study of Martensite and Martensitic Interfaces in Titanium-Manganese,Proc. R. Soc. London, Ser. A, Vol 380 (No. 1778), 1982, p 187–200CrossRefGoogle Scholar
  5. 5.
    E.W. Collings,The Physical Metallurgy of Titanium Alloys, American Society for Metals, 1984Google Scholar
  6. 6.
    D. Bhattacharyya, G.B. Viswanathan, R. Denkenberger, D. Furrer, and H.L. Fraser, The Role of Crystallographic and Geometrical Relationships Between α and β Phases in an α/β Titanium Alloy,Acta Mater., Vol 51 (No. 16), 2003, p 4679–4691CrossRefGoogle Scholar
  7. 7.
    S. Ankem and H. Margolin, The Role of Elastic Interaction Stresses on the Onset of Plastic Flow for Oriented Two Ductile Phase Structures,Metall. Trans. A, Vol 11 (No. 6), 1980, p 963–972CrossRefGoogle Scholar
  8. 8.
    S. Ankem and H. Margolin, A Rationalization of Stress-Strain Behavior of Two-Ductile Phase Alloys,Metall. Trans. A, Vol 17 (No. 12), 1986, p 2209–2226CrossRefGoogle Scholar
  9. 9.
    H.M. Otte, Mechanism of the Martensitic Transformation in Titanium and Its Alloys,Proc. of the 1st International Conference on Titanium, London-Titanium Science and Technology, R.I. Jaffee and H.M. Burte, Ed., Pergamon Press, 1996, p 645Google Scholar
  10. 10.
    S. Suri, G.B. Viswanathan, T. Neeraj, D.H. Hou, and M.J. Mills, Room Temperature Deformation and Mechanisms of Slip Transmission in Oriented Single-Colony Crystals of an Alpha/Beta Titanium Alloy,Acta Mater., Vol 17 (No. 3), 1999, p 1019–1034CrossRefGoogle Scholar
  11. 11.
    C.A. Greene, Recent Developments in the Ambient Temperature Creep Deformation Behavior of Two-Phase Titanium Alloys,Proc. of the 9th International Conference on Titanium-99: Science and Technology, I.V. Gorynin and S.S. Ushkov, Ed., CRISM, Prometey, USSR, 1999, p 585Google Scholar
  12. 12.
    G. Grewal and S. Ankem, Isothermal Particle Growth in Two-Phase Titanium Alloys,Metall. Trans. A, Vol 20 (No. 1), 1989, p 39–54Google Scholar
  13. 13.
    S. Ankem, J.G. Shyue, M.N. Vijayshankar, and R.J. Arsenault, The Effect of Volume Per Cent of Phases on the High Temperature Tensile Deformation of Two-Phase Ti-Mn Alloys,Mater. Sci. Eng. A, Vol A111, 1989, p 51–60Google Scholar
  14. 14.
    D.G. Attwood and P.M. Hazzledine, A Fiducial Grid for High-Resolution Metallography,Metallography, Vol 9 (No. 6), 1976, p 483–501CrossRefGoogle Scholar
  15. 15.
    H. Li and L. Salamanca-Riba, The Concept of High Angle Wedge Polishing and Thickness Monitoring in TEM Sample Preparation,Ultramicroscopy, Vol 88 (No. 3), 2001, p 171–178CrossRefGoogle Scholar
  16. 16.
    C.A. Greene, “Fundamental Studies on Ambient Temperature Creep Deformation Behavior of Alpha and Alpha-Beta Titanium Alloys,” Masters Thesis, University of Maryland, College Park, 1994Google Scholar
  17. 17.
    A.K. Aiyangar, B.W. Neuberger, P.G. Oberson, and S. Ankem, The Effects of Stress Level and Grain Size on the Ambient Temperature Creep Deformation Behavior of an Alpha Ti-1.6 Wt Pct V Alloy,Metall. Trans. A, Vol 36 (No. 3), 2005, p 637–644CrossRefGoogle Scholar
  18. 18.
    A. Ramesh and S. Ankem, Stress-Induced Products in a Ti-14.8 V Alloy Deformed in Tension,Metall. Trans. A, Vol 30 (No. 8), 1999, p 2249–2251CrossRefGoogle Scholar
  19. 19.
    A. Ramesh and S. Ankem, The Effect of Grain Size on the Ambient Temperature Creep Deformation Behavior of a Beta Ti-14.8 V Alloy,Metall. Trans. A, Vol 33 (No. 4), 2002, p 1137–1144CrossRefGoogle Scholar
  20. 20.
    A. Ramesh, “Effect of Stability and Grain Size on Ambient Temperature Tensile and Creep Behavior of Beta Titanium Alloys,” Masters Thesis, University of Maryland, College Park, 1998Google Scholar
  21. 21.
    A.K. Aiyangar, “The Effect of Stress Level and Grain Size on the Ambient Temperature Creep Behavior of Alpha Ti-1.6%wt. V Alloy,” Masters Thesis, University of Maryland, College Park, 2000Google Scholar
  22. 22.
    P.J. Bania, Beta Titanium Alloys and Their Role in the Titanium Industry,Beta Titanium Alloys in the 1990’s, D. Eylon, R.R. Boyer, and D.A. Koss, Ed., The Materials Society, 1993, p 3–14Google Scholar
  23. 23.
    D. Doraiswamy and S. Ankem, The Effect of Grain Size and Stability on Ambient Temperature Tensile and Creep Deformation in Metastable Beta Titanium Alloys,Acta Mater., Vol 51 (No. 6), 2003, p 1607–1619CrossRefGoogle Scholar
  24. 24.
    M.A. Meyers, O. Vöhringer, and V.A. Lubarda, The Onset of Twinning in Metals: A Constitutive Description,Acta Mater., Vol 49 (No. 19), 2001, p 4025–4039CrossRefGoogle Scholar
  25. 25.
    C.A. Greene and S. Ankem, Modelling of Elastic Interaction Stresses in Two-Phase Materials by FEM,Mater. Sci. Eng. A, Vol 202 (No. 1–2), 1995, p 103–111Google Scholar
  26. 26.
    D.A. Porter and K.E. Easterling,Phase Transformations in Metals and Alloys, 2nd ed., Chapman & Hall, London, 1997Google Scholar
  27. 27.
    T. Grosdidier, Y. Combres, E. Gautier, and M.J. Philippe, Effect of Microstructure Variations on the Formation of Deformation-Induced Martensite and Associated Tensile Properties in a Beta Metastable Ti Alloy,Metall. Trans. A, Vol 31 (No. 4), 2000, p 1095–1106CrossRefGoogle Scholar
  28. 28.
    M.K. Koul and J.F. Breedis, Phase Transformations in Beta Isomorphous Titanium Alloys,Acta Metall., Vol 18 (No. 6), 1970, p 579–588CrossRefGoogle Scholar
  29. 29.
    J.R. Patel and M. Cohen, Criterion for the Action of Applied Stress in the Martensitic Transformation,Acta Metall., Vol 1, 1953, p 531CrossRefGoogle Scholar
  30. 30.
    M. Oka and Y. Taniguchi, {332} Deformation Twins in a Ti-15.5 pct V Alloy,Metall. Trans. A, Vol 10 (No. 5), 1979, p 651–653CrossRefGoogle Scholar
  31. 31.
    E.S. Menon and R. Krishnan, Phase Transformations in Ti-V Alloys: I. Martensitic Transformations,J. Mater. Sci, Vol 18 (No. 2), 1983, p 365–374CrossRefGoogle Scholar
  32. 32.
    F-W. Ling, E.A. Starke, Jr., and B.G. LeFevre, Deformation Behavior and Texture Development in Beta Ti-V Alloys,Metall. Trans., Vol 5 (No. 1), 1974, p 179–187Google Scholar
  33. 33.
    J.L. Murray,Phase Diagrams of Binary Titanium Alloys, ASM International, 1987Google Scholar

Copyright information

© ASM International 2005

Authors and Affiliations

  • A. Jaworski
    • 1
  • S. Ankem
    • 1
  1. 1.Department of Materials Science and EngineeringUniversity of MarylandCollege Park

Personalised recommendations