Preparation and analytical electron microscopy of a SiC continuous-fiber ceramic composite

  • Goran Drazic
  • Sasa Novak
  • Sasa Novak
  • Nina Daneu
  • Katja Mejak
Nanomaterials

Abstract

Continuous-fiber-reinforced SiC/SiC-based matrix composite materials, to be used in the first-wall blanket of a fusion reactor, were prepared by the infiltration of SiC cloth with SiC-based suspensions of various chemical compositions. The compositions were tailored with respect to the calculated activation in a fast-neutron flux. Liquid-phase sintering was used for material densification, using different sintering aids, such as Al2O3, Y2O3, P2O5, AlN, etc. The microstructures of the differently prepared materials were studied with scanning and transmission electron microscopy and microanalysis.

Keywords

analytical electron microscopy first wall fusion glass-ceramics SiC 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    E.E. Bloom, The Challenge of Developing Structural Materials for Fusion Power Systems, J. Nucl. Mater., Vol 258–263 (No. 1), 1998, p 7–17CrossRefGoogle Scholar
  2. 2.
    K. Janghorban, Processing of Ceramic Matrix SiC-Al Composites, J. Mater. Process. Technol., Vol 38 (No. 1–2), 1993, p 361–368CrossRefGoogle Scholar
  3. 3.
    R. Naslain, A. Guette, F. Rebillat, R. Pailler, F. Langlais, and X. Bourrat, Boron-Bearing Species in Ceramic Matrix Composites for Long-Term Aerospace Applications, J. Solid State Chem., Vol 177 (No. 2), 2004, p 449–456CrossRefADSGoogle Scholar
  4. 4.
    G. Aiello, H. Golfier, J-F. Maire, Y. Poitevin, and J-F. Salavy, Modeling of SiCf/SiC Composite Structures for Nuclear Components, Fusion Eng. Des., Vol 51–52, 2000, p 73–79CrossRefGoogle Scholar
  5. 5.
    T. Noda, M. Fujita, H. Araki, and A. Kohyama, Effect of Nuclear Data and Impurities on the Evaluation of Induced Activity of CVISiCf/SiC Composites, Fusion Eng. Des., Vol 61–62, 2002, p 711–716CrossRefGoogle Scholar
  6. 6.
    N.P. Padture, Toughness Properties of a Silicon-Carbide With an In situ Induced Heterogeneous Grain-Structure, J. Am. Ceram. Soc., Vol 77, 1994, p 2518–22CrossRefGoogle Scholar
  7. 7.
    Y.W. Kim, M Mitomo, and H. Hirotsuru, Grain-Growth and Fracture-Toughness of Fine-grained Silicon-Carbide Ceramics, J. Am. Ceram. Soc., Vol 78, 1995, p 3145CrossRefGoogle Scholar
  8. 8.
    Y.W. Kim, M. Mitomo, and H. Hirotsuru, Microstructural Development of Silicon Carbide Containing Large Seed Grains, J. Am. Ceram. Soc., Vol 80, 1997Google Scholar
  9. 9.
    K. Biswas, G. Rixecker, I. Wiedmann, M. Schweizer, G.S. Updahyaya, and F. Aldinger, Liquid Phase Sintering and Microstructure-Property Relationships of Silicon Carbide Ceramics With Oxynitride Additives, Mater. Chem. Phys., Vol 67, 2001, p 180–191CrossRefGoogle Scholar
  10. 10.
    The European Activation System: EASY-2001 Code, R.A. Forrest, UKEA-Fus-449, 2001Google Scholar

Copyright information

© ASM International 2005

Authors and Affiliations

  • Goran Drazic
    • 1
  • Sasa Novak
    • 1
  • Sasa Novak
    • 1
  • Nina Daneu
    • 1
  • Katja Mejak
    • 1
  1. 1.Department for Nanostructured MaterialsJožef Stefan InstituteLjubljanaSlovenia

Personalised recommendations